Superior electrochemical properties of Na3V2(PO4)2F3/rGO composite cathode for high-performance sodium-ion batteries

被引:3
|
作者
Al-Marri, Abdulhadi Hamad [1 ,2 ]
机构
[1] Univ Hafr Al Batin, Coll Sci, Dept Chem, POB 1803, Hafar al Batin 39524, Saudi Arabia
[2] Univ Tabuk, Alwajh Coll, Dept Chem, Tabuk 71421, Saudi Arabia
关键词
NVPF; Reduced graphene oxide (rGO); Electrochemical characterization; Cathode materials; Cycling stability; Sodium-ion battery; CARBON-COATED NA3V2(PO4)(3); HIGH-VOLTAGE CATHODE; HIGH-POWER; ELECTRODE MATERIALS; ASSISTED SYNTHESIS; NANOPARTICLES; STORAGE; NANOCOMPOSITE; MECHANISM;
D O I
10.1007/s10008-024-05836-3
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Na3V2(PO4)(2)F-3 has garnered attention as a promising cathode material, primarily due to its substantial theoretical capacity, high operating voltage, and high structural stability. Nonetheless, this material suffers from the low intrinsic electronic conductivity, resulting in a considerable impact on the material properties. To address this challenge, we employ a straightforward hydro-solvothermal reduction process to fabricate Na3V2(PO4)(2)F-3/reduced graphene oxide composites featuring a three-dimensional conductive structure. Through an integrated approach involving material synthesis, structural characterization, and electrochemical analysis, we elucidate the synergistic effects between Na3V2(PO4)2F3 and reduced graphene oxide in facilitating sodium ion storage and transport. The Na3V2(PO4)(2)F-3/reduced graphene oxide cathode in a Na ion cell exhibits reversible capacities of 127 mAh.g(-1) at 0.1C and 74 mAh.g(-1) at 10C with a 99% retention after 100 cycles at 25 degree celsius. Excellent capacity, reversibility, structure stability, and improved ionic diffusivity make novel composite material an advanced cathode material for sodium-ion batteries, contributing to the development of cost-effective and high-performance energy storage solutions for a sustainable future.
引用
收藏
页码:2861 / 2872
页数:12
相关论文
共 50 条
  • [21] Hydrothermal Synthesis and Electrochemical Properties of Na3V2(PO4)2O2F Cathode for Sodium-Ion Batteries
    Li Wen-Jun
    Fang Cheng-Hao
    Lu Peng
    Yu Ke-Han
    Wang Zhong-Yue
    Wei Wei
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2021, 37 (07) : 1204 - 1210
  • [22] Understanding the influence of different carbon matrix on the electrochemical performance of Na3V2(PO4)3 cathode for sodium-ion batteries
    Gu, Erlong
    Xu, Jingyi
    Du, Yichen
    Ge, Xufang
    Zhu, Xiaoshu
    Bao, Jianchun
    Zhou, Xiaosi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 788 : 240 - 247
  • [23] Lotus root-like porous Na2MnPO4F•Na3V2(PO4)2F3/C as a high-performance cathode material for sodium-ion batteries
    Wang, Bingjue
    Hu, Yong
    Zhang, Xiaoping
    Shi, Zhihao
    Wu, Ling
    Sui, Yulei
    CERAMICS INTERNATIONAL, 2023, 49 (01) : 1061 - 1068
  • [24] Synergistic effect of NASICON Na3V2(PO4)2F3 and 2D MXene for high-performance symmetric Sodium-ion batteries
    Moossa, Buzaina
    Abraham, Jeffin James
    Ahmed, Abdul Moiz
    Kahraman, Ramazan
    Al-Qaradawi, Siham
    Shakoor, R. A.
    MATERIALS RESEARCH BULLETIN, 2025, 182
  • [25] Optimizing interfacial modification for enhanced performance of Na3V2(PO4)3 cathode in sodium-ion batteries
    Pan, Mengwei
    Wang, Yuxuan
    Liu, Yang
    Zhang, Mengjie
    Liu, Xichang
    Yuan, Yanle
    Zhou, Yuchen
    Liu, Weifang
    Chen, Tao
    Liu, Kaiyu
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [26] Electrochemical Properties of Hollow Spherical Na3V2(PO4)3/C Cathode Materials for Sodium-ion Batteries
    Huang, Chunmei
    Zuo, Zonglin
    Deng, Jianqiu
    Yao, Qingrong
    Wang, Zhongmin
    Zhou, Huaiying
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (10): : 9456 - 9464
  • [27] Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries
    Chen, Yanjun
    Xu, Youlong
    Sun, Xiaofei
    Zhang, Baofeng
    He, Shengnan
    Li, Long
    Wang, Chao
    JOURNAL OF POWER SOURCES, 2018, 378 : 423 - 432
  • [28] Synthesis of Na3V2(PO4)3/C Composites as High-Performance Cathode Materials for Sodium Ion Batteries
    Ding, Xiang
    Huang, Xiaobing
    Zhou, Shibiao
    Xiao, Anguo
    Chen, Yuandao
    Zuo, Chenggang
    Jin, Junling
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (03): : 2815 - 2821
  • [29] Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries
    Song, Weixin
    Ji, Xiaobo
    Wu, Zhengping
    Yang, Yingchang
    Zhou, Zhou
    Li, Fangqian
    Chen, Qiyuan
    Banks, Craig E.
    JOURNAL OF POWER SOURCES, 2014, 256 : 258 - 263
  • [30] Improved sodium storage properties of Zr-doped Na3V2(PO4)2F3/C as cathode material for sodium ion batteries
    Wang, Mingxue
    Wang, Kun
    Huang, Xiaobing
    Zhou, Tao
    Xie, Huasheng
    Ren, Yurong
    CERAMICS INTERNATIONAL, 2020, 46 (18) : 28490 - 28498