Singularities of Frontal Surfaces

被引:1
作者
Munoz-cabello, C. [1 ]
Nuno-ballesteros, J. J. [1 ,2 ]
Sinha, R. Oset [1 ]
机构
[1] Univ Valencia, Dept Matemat, Campus Burjassot, Burjassot 46100, Spain
[2] Univ Fed Paraba, Dept Matemat, BR-58051900 Joao Pessoa, Paraba, Brazil
关键词
frontals; invariants of mappings; frontal Milnor number; double point curve; GEOMETRY; GERMS; DEFORMATIONS; CURVES; MAPS;
D O I
10.14492/hokmj/2022-644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider singularities of frontal surfaces of corank one and finite frontal codimension. We look at the classification under A -equivalence and introduce the notion of frontalisation for singularities of fold type. We define the cuspidal and the transverse double point curves and prove that the frontal has finite co dimension if and only if both curves are reduced. Finally, we also discuss about the frontal versions of the Marar-Mond formulas and Mond's conjecture.
引用
收藏
页码:175 / 208
页数:34
相关论文
共 37 条
[1]  
[Anonymous], 1977, P 9 NORDIC SUMMER SC
[2]  
[Anonymous], 2004, Classics in Mathematics
[3]  
Arnold V. I., 1990, Mathematics and its Applications (Soviet Series)
[4]  
Arnold VI, 1975, P INT C MATH VANC, V1, P19
[5]   THE MILNOR NUMBER AND DEFORMATIONS OF COMPLEX CURVE SINGULARITIES [J].
BUCHWEITZ, RO ;
GREUEL, GM .
INVENTIONES MATHEMATICAE, 1980, 58 (03) :241-281
[6]   LOCAL HOMOLOGICAL PROPERTIES OF ANALYTIC SETS [J].
BURGHELEA, D ;
VERONA, A .
MANUSCRIPTA MATHEMATICA, 1972, 7 (01) :55-+
[7]   Dualities and envelopes of one-parameter families of frontals in hyperbolic and de Sitter 2-spaces [J].
Chen, L. ;
Pei, D. H. ;
Takahashi, M. .
MATHEMATISCHE NACHRICHTEN, 2020, 293 (05) :893-909
[8]  
de Jong T., 2000, Advanced Lectures in Mathematics
[9]   Singularities of maximal surfaces [J].
Fujimori, Shoichi ;
Saji, Kentaro ;
Umehara, Masaaki ;
Yamada, Kotaro .
MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (04) :827-848
[10]  
Gabrielov AM., 1974, FUNCT ANAL APPL+, V8, P7