On the magnetization of the 120° order of the spin-1/2 triangular lattice Heisenberg model: a DMRG revisited

被引:3
作者
Huang, Jiale [1 ]
Qian, Xiangjian [1 ]
Qin, Mingpu [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Phys & Astron, Key Lab Artificial Struct & Quantum Control, Minist Educ, Shanghai, Peoples R China
[2] Hefei Natl Lab, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
Heisenberg model; DMRG; triangular lattice; GROUND-STATE; NEEL ORDER; ANTIFERROMAGNET;
D O I
10.1088/1361-648X/ad21a8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We revisit the issue about the magnetization of the 120 degrees order in the spin-1/2 triangular lattice Heisenberg model with density matrix renormalization group (DMRG). The accurate determination of the magnetization of this model is challenging for numerical methods and its value exhibits substantial disparities across various methods. We perform a large-scale DMRG calculation of this model by employing bond dimension as large as D=24000 and by studying the system with width as large as Ly=12 . With careful extrapolation with truncation error and suitable finite size scaling, we give a conservative estimation of the magnetization as M0=0.208(8) . The ground state energy per site we obtain is Eg=-0.5503(8) . Our results provide valuable benchmark values for the development of new methods in the future.
引用
收藏
页数:6
相关论文
共 41 条
[1]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[2]   RESONATING VALENCE BONDS - NEW KIND OF INSULATOR [J].
ANDERSON, PW .
MATERIALS RESEARCH BULLETIN, 1973, 8 (02) :153-160
[3]   SPONTANEOUS SYMMETRY-BREAKING IN QUANTUM FRUSTRATED ANTIFERROMAGNETS [J].
AZARIA, P ;
DELAMOTTE, B ;
MOUHANNA, D .
PHYSICAL REVIEW LETTERS, 1993, 70 (16) :2483-2486
[4]   Tensor Network Algorithms: A Route Map [J].
Banuls, Mari Carmen .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, 2023, 14 :173-191
[5]   EXACT SPECTRA, SPIN SUSCEPTIBILITIES, AND ORDER-PARAMETER OF THE QUANTUM HEISENBERG-ANTIFERROMAGNET ON THE TRIANGULAR LATTICE [J].
BERNU, B ;
LECHEMINANT, P ;
LHUILLIER, C ;
PIERRE, L .
PHYSICAL REVIEW B, 1994, 50 (14) :10048-10062
[6]   SIGNATURE OF NEEL ORDER IN EXACT SPECTRA OF QUANTUM ANTIFERROMAGNETS ON FINITE LATTICES [J].
BERNU, B ;
LHUILLIER, C ;
PIERRE, L .
PHYSICAL REVIEW LETTERS, 1992, 69 (17) :2590-2593
[7]   Long-range Neel order in the triangular Heisenberg model [J].
Capriotti, L ;
Trumper, AE ;
Sorella, S .
PHYSICAL REVIEW LETTERS, 1999, 82 (19) :3899-3902
[8]   Spin waves in a triangular lattice antiferromagnet: Decays, spectrum renormalization, and singularities [J].
Chernyshev, A. L. ;
Zhitomirsky, M. E. .
PHYSICAL REVIEW B, 2009, 79 (14)
[9]   Spin Excitation Spectra of Anisotropic Spin-1/2 Triangular Lattice Heisenberg Antiferromagnets [J].
Chi, Runze ;
Liu, Yang ;
Wan, Yuan ;
Liao, Hai-Jun ;
Xiang, T. .
PHYSICAL REVIEW LETTERS, 2022, 129 (22)
[10]   Matrix product states and projected entangled pair states: Concepts, symmetries, theorems [J].
Cirac, J. Ignacio ;
Perez-Garcia, David ;
Schuch, Norbert ;
Verstraete, Frank .
REVIEWS OF MODERN PHYSICS, 2021, 93 (04)