Mechanical Properties of 3D-Printed Carbon Fiber-Reinforced Cement Mortar

被引:7
|
作者
Li, Yeou-Fong [1 ]
Tsai, Pei-Jen [1 ]
Syu, Jin-Yuan [1 ]
Lok, Man-Hoi [2 ]
Chen, Huei-Shiung [3 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Civil Engn, Taipei 10608, Taiwan
[2] Univ Macau, Fac Sci & Technol, Dept Civil & Environm Engn, Ave Univ Taipa, Macau 999078, Peoples R China
[3] Umas Technol Co Ltd, 9,Aly 18,Ln 671,Minsheng Rd, Taichung 41348, Taiwan
关键词
3D printing; carbon fiber-reinforced cement mortar; fluidity; buildability; compressive strength; flexural strength; 3D; PERFORMANCE; CONSTRUCTION; CONCRETE; STRENGTH; EXTRUSION; BEHAVIOR; DESIGN;
D O I
10.3390/fib11120109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The 3D printing process is different from traditional construction methods of formwork casting due to the use of additive manufacturing. This study develops a suitable 3D-printed carbon fiber-reinforced cement mortar (CFRCM) considering the extrudability, fluidity, setting time, and buildability of the CFRCM. The difference in compressive strength and flexural strength between 3D-printed specimens and conventional cast specimens was investigated by varying the amount of carbon fiber added (carbon fiber to cement ratio, 2.5 vol.parts per thousand, 5 vol.parts per thousand, 7.5 vol.parts per thousand, and 10 vol.parts per thousand) and the curing times (7th day and 28th day). The results of the experiments indicate that the addition of 6 wt.% cement accelerators to the cementitious mortar allows for a controlled initial setting time of approximately half an hour. The fluidity of the CFRCM was controlled by adjusting the dosage of the superplasticizer. When the slump was in the range of 150 mm to 190 mm, the carbon fiber to cement ratio 2.5 vol.parts per thousand could be incorporated into the cementitious mortar, enabling the printing of hollow cylinders with a height of up to 750 mm. Comparing the 3D-printed specimens with the traditionally cast specimens, it was found that the addition of a carbon fiber to cement ratio of 7.5 vol.parts per thousand, and 10 vol.parts per thousand resulted in the optimal compressive strength and flexural strength, respectively.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Enhancing the printing quality and mechanical properties of 3D-printed cement composites with date syrup-based graphene coated sand hybrid
    Ali, Mohd Mukarram
    Abu Al-Rub, Rashid K.
    Banat, Fawzi
    Kim, Tae-Yeon
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2024, 20
  • [32] Mechanical response of small-scale 3D-printed steel-mortar composite beams
    Rodriguez, Fabian B.
    Moini, Reza
    Agrawal, Shubham
    Williams, Christopher S.
    Zavattieri, Pablo D.
    Olek, Jan
    Youngblood, Jeffrey P.
    Varma, Amit H.
    CEMENT & CONCRETE COMPOSITES, 2024, 154
  • [33] Mechanical properties of sisal fiber-reinforced fly ash cement mortar activated by sodium sulfate
    Jin, Wei
    Han, Chunpeng
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 445
  • [34] Impact Resistance and Flexural Performance Properties of Hybrid Fiber-Reinforced Cement Mortar Containing Steel and Carbon Fibers
    Park, Jong-Gun
    Seo, Dong-Ju
    Heo, Gwang-Hee
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [35] Mechanical and microstructural properties of 3D-printed aluminate cement based composite exposed to elevated temperatures
    Wang, Li
    Lin, Wenyu
    Ma, Hui
    Li, Dexin
    Wang, Qiao
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 353
  • [36] Rheological and mechanical properties of hybrid fiber reinforced cement mortar
    Cao, Mingli
    Xu, Ling
    Zhang, Cong
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 171 : 736 - 742
  • [37] Using graphene oxide to improve the mechanical and electrical properties of fiber-reinforced high-volume sugarcane bagasse ash cement mortar
    Gopalakrishnan, Ramasamy
    Kaveri, Ravi
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (02)
  • [38] Data-driven models for predicting compressive strength of 3D-printed fiber-reinforced concrete using interpretable machine learning algorithms
    Arif, Muhammad
    Jan, Faizullah
    Rezzoug, Aissa
    Afridi, Muhammad Ali
    Luqman, Muhammad
    Khan, Waseem Akhtar
    Kujawa, Marcin
    Alabduljabbar, Hisham
    Khan, Majid
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 21
  • [39] Mechanical properties and pore structure of 3D printed mortar with recycled powder
    Hou, Shaodan
    Duan, Zhenhua
    Ye, Taohua
    Zou, Shuai
    Xiao, Jianzhuang
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 394
  • [40] Investigation of recovery behavior on 3D-printed continuous plant fiber-reinforced composites
    Long, Yu
    Zhang, Zhongsen
    Bi, Zhixiong
    Fu, Kunkun
    Li, Yan
    ADDITIVE MANUFACTURING, 2024, 88