A Quadratic Serendipity Finite Volume Element Method on Arbitrary Convex Polygonal Meshes

被引:0
作者
Zhang, Yanlong [1 ,2 ]
机构
[1] China Acad Engn Phys, Grad Sch, Beijing 100088, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratic serendipity polygonal finite volume element method; arbitrary convex polygonal meshes; Wachspress coordinate; unified dual partitions; optimal H1 error estimate; DIFFUSION-EQUATIONS; SCHEMES;
D O I
10.4208/cicp.OA-2022-0307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the idea of serendipity element, we construct and analyze the first quadratic serendipity finite volume element method for arbitrary convex polyg-onal meshes in this article. The explicit construction of quadratic serendipity element shape function is introduced from the linear generalized barycentric coordinates, and the quadratic serendipity element function space based on Wachspress coordi-nate is selected as the trial function space. Moreover, we construct a family of unified dual partitions for arbitrary convex polygonal meshes, which is crucial to finite vol-ume element scheme, and propose a quadratic serendipity polygonal finite volume element method with fewer degrees of freedom. Finally, under certain geometric assumption conditions, the optimal H1 error estimate for the quadratic serendipity polygonal finite volume element scheme is obtained, and verified by numerical ex-periments.
引用
收藏
页码:116 / 131
页数:16
相关论文
共 35 条
  • [1] Quadratic serendipity element shape functions on general planar polygons
    Cao, Juan
    Xiao, Yi
    Xiao, Yanyang
    Chen, Zhonggui
    Xue, Fei
    Wei, Xiaodong
    Zhang, Yongjie Jessica
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 392
  • [2] Functional data approximation on bounded domains using polygonal finite elements
    Cao, Juan
    Xiao, Yanyang
    Chen, Zhonggui
    Wang, Wenping
    Bajaj, Chandrajit
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2018, 63 : 149 - 163
  • [3] A Decoupled and Positivity-Preserving DDFV Scheme for Diffusion Problems on Polyhedral Meshes
    Dong, Qiannan
    Su, Shuai
    Wu, Jiming
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2020, 27 (05) : 1378 - 1412
  • [4] Emonot P., 1992, Methodes de volumes elements finis: Applications aux equations de Navier Stokes et resultats de convergence
  • [5] POLYGONAL SPLINE SPACES AND THE NUMERICAL SOLUTION OF THE POISSON EQUATION
    Floater, Michael S.
    Lai, Ming-Jun
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 797 - 824
  • [6] Generalized barycentric coordinates and applications
    Floater, Michael S.
    [J]. ACTA NUMERICA, 2015, 24 : 161 - 214
  • [7] Mean value coordinates
    Floater, MS
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (01) : 19 - 27
  • [8] Error estimates for generalized barycentric interpolation
    Gillette, Andrew
    Rand, Alexander
    Bajaj, Chandrajit
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 37 (03) : 417 - 439
  • [9] Hormann K., 2017, GEN BARYCENTRIC COOR
  • [10] The Corrected Finite Volume Element Methods for Diffusion Equations Satisfying Discrete Extremum
    Li, Ang
    Yang, Hongtao
    Li, Yonghai
    Yuan, Guangwei
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 32 (05) : 1437 - 1473