Digital holographic interferometry for diagnosing the density profile of laser-produced collisionless shock

被引:1
作者
Si, Hua-chong [1 ]
Tang, Hui-bo [2 ,3 ,4 ,5 ]
Liu, Wei [1 ]
Yuan, Peng [1 ,2 ]
Hu, Guang-yue [1 ,2 ,4 ,5 ]
机构
[1] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei, Peoples R China
[2] Univ Sci & Technol China, CAS Key Lab Geospace Environm, Hefei, Peoples R China
[3] Harbin Inst Technol, Sch Phys, Harbin, Peoples R China
[4] Chinese Acad Sci, State Key Lab High Field Laser Phys, Shanghai, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, CAS Ctr Excellence Ultraintense Laser Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
PLASMA-EXPERIMENTS; RECONSTRUCTION;
D O I
10.1063/5.0137407
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A digital holographic interferometry based on Fresnel biprism has been developed to measure the electron density profile of laser-produced collisionless shocks in laboratory, which used the Fourier transform method to solve the wrapped phase. The discontinuous surfaces of shocks will produce the break and split of the interference fringes, which cannot be processed by the conventional path-following phase unwrapping algorithm when reconstructing the real phase of the plasma. Therefore, we used a least-squares method to extract the real phase, which is proportional to the line-integrated electron density. We obtained fine density profiles of collisionless shocks in the line-integrated density region around 10(18) cm(-2) with a density resolution of 3.38 x 10(16) cm(-2). The shock structure is in well agreement with that measured by the dark-field schlieren methods and that predicted by shock jump condition. Synthetic holograms are used to confirm the effectiveness of our algorithm, and it is shown that correct results can still be obtained even if part of the diagnostic light is refracted out of the optical system by the shock.
引用
收藏
页数:11
相关论文
共 36 条
  • [1] Shock wave generation in laser ablation studied using pulsed digital holographic interferometry
    Amer, Eynas
    Gren, Per
    Sjodahl, Mikael
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (21)
  • [2] Optical Time-Resolved Diagnostics of Laser-Produced Plasmas
    Batani, D.
    Santos, J.
    Forestier-Colleoni, P.
    Mancelli, D.
    Ehret, M.
    Trela, J.
    Morace, A.
    Jakubowska, K.
    Antonelli, L.
    del Sorbo, D.
    Manclossi, M.
    Veltcheva, M.
    [J]. JOURNAL OF FUSION ENERGY, 2019, 38 (3-4) : 299 - 314
  • [3] POLARIZED-LIGHT INTERFEROMETER FOR LASER FUSION STUDIES
    BENATTAR, R
    POPOVICS, C
    SIGEL, R
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1979, 50 (12) : 1583 - 1585
  • [4] Holographic recording of laser-induced plasma
    Centurion, M
    Pu, Y
    Liu, ZW
    Psaltis, D
    Hansch, TW
    [J]. OPTICS LETTERS, 2004, 29 (07) : 772 - 774
  • [5] Robust phase-unwrapping techniques: A comparison
    Fornaro, G
    Franceschetti, G
    Lanari, R
    Sansosti, E
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1996, 13 (12): : 2355 - 2366
  • [6] Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam
    Froula, D. H.
    Boni, R.
    Bedzyk, M.
    Craxton, R. S.
    Ehrne, F.
    Ivancic, S.
    Jungquist, R.
    Shoup, M. J.
    Theobald, W.
    Weiner, D.
    Kugland, N. L.
    Rushford, M. C.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10)
  • [7] Ghiglia D C, 1998, Two-dimensional phase unwrapping: Theory, algorithms, and software
  • [8] SATELLITE RADAR INTERFEROMETRY - TWO-DIMENSIONAL PHASE UNWRAPPING
    GOLDSTEIN, RM
    ZEBKER, HA
    WERNER, CL
    [J]. RADIO SCIENCE, 1988, 23 (04) : 713 - 720
  • [9] PLASMA EXPERIMENTS WITH A 3-METER THETA-PINCH
    GRIBBLE, RF
    QUINN, WE
    SIEMON, RE
    [J]. PHYSICS OF FLUIDS, 1971, 14 (09) : 2042 - &
  • [10] Pulsed magnetic field device for laser plasma experiments at Shenguang-II laser facility
    Hu, Peng
    Hu, Guang-yue
    Wang, Yu-lin
    Tang, Hui-bo
    Zhang, Zhen-chi
    Zheng, Jian
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (01)