Synchrophasor Data Event Detection using Unsupervised Wavelet Convolutional Autoencoders

被引:0
作者
Buckelew, Jacob [1 ]
Basumallik, Sagnik [1 ]
Sivaramakrishnan, Vasavi [1 ]
Mukhopadhyay, Ayan [1 ]
Srivastava, Anurag K. [1 ]
Dubey, Abhishek [1 ]
机构
[1] West Virginia Univ, Morgantown, WV 26506 USA
来源
2023 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING, SMARTCOMP | 2023年
基金
美国国家科学基金会;
关键词
convolutional neural network; hardware-in-the-loop; unsupervised machine learning; phasor measurement units; DIMENSIONALITY;
D O I
10.1109/SMARTCOMP58114.2023.00080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Timely and accurate detection of events affecting the stability and reliability of power transmission systems is crucial for safe grid operation. This paper presents an efficient unsupervised machine-learning algorithm for event detection using a combination of discrete wavelet transform (DWT) and convolutional autoencoders (CAE) with synchrophasor phasor measurements. These measurements are collected from a hardware-in-the-loop testbed setup equipped with a digital real-time simulator. Using DWT, the detail coefficients of measurements are obtained. Next, the decomposed data is then fed into the CAE that captures the underlying structure of the transformed data. Anomalies are identified when significant errors are detected between input samples and their reconstructed outputs. We demonstrate our approach on the IEEE-14 bus system considering different events such as generator faults, line-to-line faults, line-to-ground faults, load shedding, and line outages simulated on a real-time digital simulator (RTDS). The proposed implementation achieves a classification accuracy of 97.7%, precision of 98.0%, recall of 99.5%, F1 Score of 98.7%, and proves to be efficient in both time and space requirements compared to baseline approaches.
引用
收藏
页码:326 / 331
页数:6
相关论文
共 24 条
[11]   Unsupervised Power System Event Detection and Classification Using Unlabeled PMU Data [J].
Lan, Tu ;
Lin, You ;
Wang, Jianhui ;
Leao, Bruno ;
Fradkin, Dmitriy .
2021 IEEE PES INNOVATIVE SMART GRID TECHNOLOGY EUROPE (ISGT EUROPE 2021), 2021, :468-472
[12]  
Li H., 2019, P IEEE POW EN SOC GE, P1
[13]   A PMU-Based Data-Driven Approach for Classifying Power System Events Considering Cyberattacks [J].
Ma, Rui ;
Basumallik, Sagnik ;
Eftekharnejad, Sara .
IEEE SYSTEMS JOURNAL, 2020, 14 (03) :3558-3569
[14]   PMU-Based Wide-Area Security Assessment: Concept, Method, and Implementation [J].
Makarov, Yuri V. ;
Du, Pengwei ;
Lu, Shuai ;
Nguyen, Tony B. ;
Guo, Xinxin ;
Burns, J. W. ;
Gronquist, Jim F. ;
Pai, M. A. .
IEEE TRANSACTIONS ON SMART GRID, 2012, 3 (03) :1325-1332
[15]   A THEORY FOR MULTIRESOLUTION SIGNAL DECOMPOSITION - THE WAVELET REPRESENTATION [J].
MALLAT, SG .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :674-693
[16]   A Real Time Event Detection, Classification and Localization Using Synchrophasor Data [J].
Pandey, Shikhar ;
Srivastava, Anurag K. ;
Amidan, Brett G. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (06) :4421-4431
[17]  
Senaratne D., 2021, 2021 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), P1
[18]   Practical Considerations to Calibrate Generator Model Parameters Using Phasor Measurements [J].
Tsai, Chin-Chu ;
Chang-Chien, Le-Ren ;
Chen, I-Jen ;
Lin, Chia-Jung ;
Lee, Wei-Jen ;
Wu, Chin-Chung ;
Lan, Hung-Wei .
IEEE TRANSACTIONS ON SMART GRID, 2017, 8 (05) :2228-2238
[19]   PMU Based Problematic Parameter Identification Approach for Calibrating Generating Unit Models [J].
Wang, Peng ;
Zhang, Zhenyuan ;
Huang, Qi ;
Zhang, Weijun ;
Lee, Wei-Jen .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (05) :4520-4527
[20]   Power Grid Online Surveillance Through PMU-Embedded Convolutional Neural Networks [J].
Wang, Shiyuan ;
Dehghanian, Payman ;
Li, Li .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (02) :1146-1155