Sentiment Analysis on COVID-19 Vaccine Tweets using Machine Learning and Deep Learning Algorithms

被引:0
|
作者
Jain, Tarun [1 ]
Verma, Vivek Kumar [1 ]
Sharma, Akhilesh Kumar [2 ]
Saini, Bhavna [3 ]
Purohit, Nishant [1 ]
Mahdin, Hairulnizam [4 ]
Ahmad, Masitah [5 ]
Darman, Rozanawati [4 ]
Haw, Su-Cheng [6 ,7 ]
Shaharudin, Shazlyn Milleana [8 ]
Arshad, Mohammad Syafwan [9 ]
机构
[1] Manipal Univ Jaipur, Dehmi Kalan, Jaipur Ajmer Expressway, Jaipur 303007, Rajasthan, India
[2] Manipal Univ Jaipur, Sch Informat Technol, Jaipur, Rajasthan, India
[3] Cent Univ Rajasthan, Rajasthan, India
[4] Univ Tun Hussein Onn Malaysia, Fac Comp Sci & Informat Technol, Parit Raja, Malaysia
[5] Multimedia Univ, Fac Comp & Informat, Jalan Multimedia, Cyberjaya 63100, Malaysia
[6] Univ Pendidikan Sultan Idris, Fac Sci & Math, Dept Math, Perak, Malaysia
[7] Columbia Univ, Dept Stat, New York, NY USA
[8] Univ Teknol MARA Shah Alam, Fac Comp & Math Sci, Selangor, Malaysia
[9] MZR Global Sdn Bhd, Jalan Kristal K7-K, Seksyen 7,Malaysia 12, Shah Alam 40000, Selangor, Malaysia
关键词
Covid-19; vaccine; sentiment analysis; machine learning; deep learning; natural language processing;
D O I
10.14569/IJACSA.2023.0140504
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
One of the main functions of NLP (Natural Language Processing) is to analyze a sentiment or opinion of the text considered. In this research the objective is to analyze the sentiment in the form of tweets towards the Covid-19 vaccination. In this study, the collected tweets are in the form of a dataset from Kaggle that have been categorized into positive and negative depending on the polarity of the sentiment in that tweet, to visualize the overall situation. The reviews are translated into vector representations using various techniques, including Bag-Of-Words and TF-IDF to ensure the best result. Machine learning algorithms like Logistic Regression, Naive Bayes, Support Vector Machine (SVM) and others, and Deep Learning algorithms like LSTM and Bert were used to train the predictive models. The performance metrics used to test the performance of the models show that Support Vector Machine (SVM) achieved the highest accuracy of 88.7989% among the machine learning models. Compared to the related research papers the highest accuracy obtained using LSTM is 90.59 % and our model has predicted with the highest accuracy of 90.42% using BERT techniques.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 50 条
  • [41] Analysis on Prediction of COVID-19 with Machine Learning Algorithms
    Sathyaraj, R.
    Kanthavel, R.
    Cavaliere, Luigi Pio Leonardo
    Vyas, Sumit
    Maheswari, S.
    Gupta, Ravi Kumar
    Raja, M. Ramkumar
    Dhaya, R.
    Gupta, Mukesh Kumar
    Sengan, Sudhakar
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2022, 30 (SUPP01) : 67 - 82
  • [42] Arabic Sentiment Analysis using Deep Learning for COVID-19 Twitter Data
    Alhumoud, Sarah
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (09): : 132 - 138
  • [43] Deep Learning Model for COVID-19 Sentiment Analysis on Twitter
    Contreras Hernandez, Salvador
    Tzili Cruz, Maria Patricia
    Espinola Sanchez, Jose Martin
    Perez Tzili, Angelica
    NEW GENERATION COMPUTING, 2023, 41 (02) : 189 - 212
  • [44] A Deep Learning Approach for Sentiment Analysis of COVID-19 Reviews
    Singh, Chetanpal
    Imam, Tasadduq
    Wibowo, Santoso
    Grandhi, Srimannarayana
    APPLIED SCIENCES-BASEL, 2022, 12 (08):
  • [45] Deep Learning Model for COVID-19 Sentiment Analysis on Twitter
    Salvador Contreras Hernández
    María Patricia Tzili Cruz
    José Martín Espínola Sánchez
    Angélica Pérez Tzili
    New Generation Computing, 2023, 41 : 189 - 212
  • [46] Machine and deep learning algorithms for sentiment analysis during COVID-19: A vision to create fake news resistant society
    Tayyab Zamir, Muhammad
    Ullah, Fida
    Tariq, Rasikh
    Bangyal, Waqas Haider
    Arif, Muhammad
    Gelbukh, Alexander
    PLOS ONE, 2024, 19 (12):
  • [47] A Deep Learning Approach for Ideology Detection and Polarization Analysis Using COVID-19 Tweets
    Kabir, Md Yasin
    Madria, Sanjay
    CONCEPTUAL MODELING (ER 2022), 2022, 13607 : 209 - 223
  • [48] Comparative analysis of machine learning-based classification models using sentiment classification of tweets related to COVID-19 pandemic
    Gulati, Kamal
    Kumar, S. Saravana
    Boddu, Raja Sarath Kumar
    Sarvakar, Ketan
    Sharma, Dilip Kumar
    Nomani, M. Z. M.
    MATERIALS TODAY-PROCEEDINGS, 2022, 51 : 38 - 41
  • [49] TClustVID: A novel machine learning classification model to investigate topics and sentiment in COVID-19 tweets
    Satu, Md Shahriare
    Khan, Md Imran
    Mahmud, Mufti
    Uddin, Shahadat
    Summers, Matthew A.
    Quinn, Julian M. W.
    Moni, Mohammad Ali
    KNOWLEDGE-BASED SYSTEMS, 2021, 226
  • [50] Sine Cosine Optimization with Deep Learning-Based Applied Linguistics for Sentiment Analysis on COVID-19 Tweets
    Motwakel, Abdelwahed
    Alshahrani, Hala J.
    Hassan, Abdulkhaleq Q. A.
    Tarmissi, Khaled
    Mehanna, Amal S.
    Yaseen, Ishfaq
    Abdelmageed, Amgad Atta
    Mahzari, Mohammad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 4767 - 4783