Sentiment Analysis on COVID-19 Vaccine Tweets using Machine Learning and Deep Learning Algorithms

被引:0
|
作者
Jain, Tarun [1 ]
Verma, Vivek Kumar [1 ]
Sharma, Akhilesh Kumar [2 ]
Saini, Bhavna [3 ]
Purohit, Nishant [1 ]
Mahdin, Hairulnizam [4 ]
Ahmad, Masitah [5 ]
Darman, Rozanawati [4 ]
Haw, Su-Cheng [6 ,7 ]
Shaharudin, Shazlyn Milleana [8 ]
Arshad, Mohammad Syafwan [9 ]
机构
[1] Manipal Univ Jaipur, Dehmi Kalan, Jaipur Ajmer Expressway, Jaipur 303007, Rajasthan, India
[2] Manipal Univ Jaipur, Sch Informat Technol, Jaipur, Rajasthan, India
[3] Cent Univ Rajasthan, Rajasthan, India
[4] Univ Tun Hussein Onn Malaysia, Fac Comp Sci & Informat Technol, Parit Raja, Malaysia
[5] Multimedia Univ, Fac Comp & Informat, Jalan Multimedia, Cyberjaya 63100, Malaysia
[6] Univ Pendidikan Sultan Idris, Fac Sci & Math, Dept Math, Perak, Malaysia
[7] Columbia Univ, Dept Stat, New York, NY USA
[8] Univ Teknol MARA Shah Alam, Fac Comp & Math Sci, Selangor, Malaysia
[9] MZR Global Sdn Bhd, Jalan Kristal K7-K, Seksyen 7,Malaysia 12, Shah Alam 40000, Selangor, Malaysia
关键词
Covid-19; vaccine; sentiment analysis; machine learning; deep learning; natural language processing;
D O I
10.14569/IJACSA.2023.0140504
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
One of the main functions of NLP (Natural Language Processing) is to analyze a sentiment or opinion of the text considered. In this research the objective is to analyze the sentiment in the form of tweets towards the Covid-19 vaccination. In this study, the collected tweets are in the form of a dataset from Kaggle that have been categorized into positive and negative depending on the polarity of the sentiment in that tweet, to visualize the overall situation. The reviews are translated into vector representations using various techniques, including Bag-Of-Words and TF-IDF to ensure the best result. Machine learning algorithms like Logistic Regression, Naive Bayes, Support Vector Machine (SVM) and others, and Deep Learning algorithms like LSTM and Bert were used to train the predictive models. The performance metrics used to test the performance of the models show that Support Vector Machine (SVM) achieved the highest accuracy of 88.7989% among the machine learning models. Compared to the related research papers the highest accuracy obtained using LSTM is 90.59 % and our model has predicted with the highest accuracy of 90.42% using BERT techniques.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 50 条
  • [21] Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset
    Qorib, Miftahul
    Oladunni, Timothy
    Denis, Max
    Ososanya, Esther
    Cotae, Paul
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 212
  • [22] Arabic Sentiment Analysis using Deep Learning for COVID-19 Twitter Data
    Alhumoud, Sarah
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (09): : 132 - 138
  • [23] A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets
    Basiri, Mohammad Ehsan
    Nemati, Shahla
    Abdar, Moloud
    Asadi, Somayeh
    Acharrya, U. Rajendra
    KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [24] A Deep Learning Approach for Sentiment Analysis of COVID-19 Reviews
    Singh, Chetanpal
    Imam, Tasadduq
    Wibowo, Santoso
    Grandhi, Srimannarayana
    APPLIED SCIENCES-BASEL, 2022, 12 (08):
  • [25] COVID-19 Related Sentiment Analysis Using State-of-the-Art Machine Learning and Deep Learning Techniques
    Jalil, Zunera
    Abbasi, Ahmed
    Javed, Abdul Rehman
    Badruddin Khan, Muhammad
    Abul Hasanat, Mozaherul Hoque
    Malik, Khalid Mahmood
    Saudagar, Abdul Khader Jilani
    FRONTIERS IN PUBLIC HEALTH, 2022, 9
  • [26] Comparative analysis of machine learning-based classification models using sentiment classification of tweets related to COVID-19 pandemic
    Gulati, Kamal
    Kumar, S. Saravana
    Boddu, Raja Sarath Kumar
    Sarvakar, Ketan
    Sharma, Dilip Kumar
    Nomani, M. Z. M.
    MATERIALS TODAY-PROCEEDINGS, 2022, 51 : 38 - 41
  • [27] Sine Cosine Optimization with Deep Learning-Based Applied Linguistics for Sentiment Analysis on COVID-19 Tweets
    Motwakel, Abdelwahed
    Alshahrani, Hala J.
    Hassan, Abdulkhaleq Q. A.
    Tarmissi, Khaled
    Mehanna, Amal S.
    Yaseen, Ishfaq
    Abdelmageed, Amgad Atta
    Mahzari, Mohammad
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 4767 - 4783
  • [28] Sentiment Analysis using Machine Learning and Deep Learning
    Chandra, Yogesh
    Jana, Antoreep
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM-2020), 2019, : 1 - 4
  • [29] Analysis and Prediction of User Sentiment on COVID-19 Pandemic Using Tweets
    Yeasmin, Nilufa
    Mahbub, Nosin Ibna
    Baowaly, Mrinal Kanti
    Singh, Bikash Chandra
    Alom, Zulfikar
    Aung, Zeyar
    Azim, Mohammad Abdul
    BIG DATA AND COGNITIVE COMPUTING, 2022, 6 (02)
  • [30] User satisfaction with Arabic COVID-19 apps: Sentiment analysis of users' reviews using machine learning techniques
    Ramzy, Mina
    Ibrahim, Bahaa
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (03)