A NUMERICAL STUDY FOR SOLVING MULTI-TERM FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS

被引:0
作者
Narsale, Sonali M. [1 ]
Jafari, Hossein [2 ,3 ]
Lodhi, Ram Kishun [4 ]
机构
[1] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Pune, India
[2] Univ South Africa, Dept Math Sci, Pretoria, South Africa
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[4] Symbiosis Int Univ, Symbiosis Inst Technol, Dept Appl Sci, Pune, India
来源
THERMAL SCIENCE | 2023年 / 27卷 / Special Issue 1期
关键词
fractional differential equations; orthonormal Boubaker polynomials; Gram-Schmidt process; operational matrix; covergence analysis; OPERATIONAL MATRICES;
D O I
10.2298/TSCI23S1401N
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this article, we extended operational matrices using orthonormal Boubaker polynomials of Riemann-Liouville fractional integration and Caputo derivative to find numerical solution of multi-term fractional-order differential equations (FDE). The proposed method is utilized to convert FDE into a system of algebraic equations. The convergence of the method is proved. Examples are given to explain the simplicity, computational time and accuracy of the method.
引用
收藏
页码:S401 / S410
页数:10
相关论文
共 20 条
[1]  
Abdelkrim B., 2022, ARXIV, DOI [10.48550/arXiv.2022.09787, DOI 10.48550/ARXIV.2022.09787]
[2]   A review of operational matrices and spectral techniques for fractional calculus [J].
Bhrawy, Ali H. ;
Taha, Taha M. ;
Tenreiro Machado, Jose A. .
NONLINEAR DYNAMICS, 2015, 81 (03) :1023-1052
[3]   Numerical solutions of multi-order fractional differential equations by Boubaker Polynomials [J].
Bolandtalat, A. ;
Babolian, E. ;
Jafari, H. .
OPEN PHYSICS, 2016, 14 (01) :226-230
[4]   A novel Jacobi operational matrix for numerical solution of multi-term variable-order fractional differential equations [J].
El-Sayed, A. A. ;
Baleanu, D. ;
Agarwal, P. .
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01) :963-974
[5]   Bio-Heat Models Revisited: Concepts, Derivations, Nondimensalization and Fractionalization Approaches [J].
Hristov, Jordan .
FRONTIERS IN PHYSICS, 2019, 7
[6]   A Numerical Approach for Multi-variable Orders Differential Equations Using Jacobi Polynomials [J].
Ganji R.M. ;
Jafari H. .
International Journal of Applied and Computational Mathematics, 2019, 5 (2)
[7]  
Kashem B., 2020, J SW JIAOTONG U, V3, P55
[8]  
Kobra R., 2017, NONLINEAR DYNAM, V2, P1013
[9]  
Mayada M. A., 2014, BAGHDAD SCI J, V3, P1295
[10]  
Nazeer A. K, 2020, J MECH CONTIN MATH S, V11, P119