Descriptions of strongly multiplicity free representations for simple Lie algebras

被引:0
作者
Sun, Bin-Ni [1 ]
Zhao, Yufeng [1 ]
机构
[1] Peking Univ, Dept Math, Beijing, Peoples R China
关键词
Simple Lie algebra; Strongly multiplicity free module; Casimir operator; Invariant endomorphism algebra; INVARIANT OPERATORS; TENSOR-PRODUCTS; MODULES;
D O I
10.1016/j.jalgebra.2023.12.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a complex simple Lie algebra and Z(g) be the center of the universal enveloping algebra U(g). Denote by V lambda the finite -dimensional irreducible g -module with highest weight lambda. Lehrer and Zhang defined the notion of strongly multiplicity free representations for simple Lie algebras motivated by studying the structure of the endomorphism algebra EndU(g)(V lambda circle times r) in terms of the quotients of the Kohno's infinitesimal braid algebra. Kostant introduced the g -invariant endomorphism algebras R lambda (g) = (End V lambda circle times U(g))g and R lambda,pi(g) = (End V lambda circle times pi(U(g)))g. In this paper, we give some other criteria for a multiplicity free representation to be strongly multiplicity free by classifying the pairs (g, V lambda), which are multiplicity free and for such pairs, R lambda (g) and R lambda,pi(g) are generated by generalizations of the quadratic Casimir elements of Z(g). (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:655 / 689
页数:35
相关论文
共 19 条
[1]  
[Anonymous], 1972, Introduction to Lie Algebras and Representation Theory
[2]   A simple proof of Kostant's theorem that U(g) is free over its center [J].
Bernstein, J ;
Lunts, V .
AMERICAN JOURNAL OF MATHEMATICS, 1996, 118 (05) :979-987
[3]  
Carter R., 2005, LIE ALGEBRAS FINITE
[4]  
Dorwart H. L., 1937, AM MATH MONTHLY, V44, P613, DOI [10.2307/2301480, DOI 10.1080/00029890.1937.11988044]
[5]  
Fulton W., 2004, Graduate Texts in Mathematics, V129
[6]  
Goodman R, 2009, GRAD TEXTS MATH, V255, P1, DOI 10.1007/978-0-387-79852-3_1
[7]   CHARACTERISTIC IDENTITIES FOR SEMI-SIMPLE LIE-ALGEBRAS [J].
GOULD, MD .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1985, 26 (JAN) :257-283
[8]  
Howe R., 1995, The Schur lectures, Israel Mathematical Conference Proceedings, P8
[10]   Multiplicity-free tensor products of irreducible representations of the exceptional Lie groups [J].
King, RC ;
Wybourne, BG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (15) :3489-3513