Existence of time-dependent attractor of wave equation in locally uniform space

被引:0
作者
Luo, Xudong [1 ]
Ma, Qiaozhen [2 ,3 ]
机构
[1] Gansu Univ Polit Sci & Law, Sch Artificial Intelligence, Lanzhou, Peoples R China
[2] Northwest Normal Univ, Coll Math & Stat, Lanzhou, Peoples R China
[3] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
关键词
Wave equation; contractive function; time-dependent attractor; locally uniform space; EVOLUTION-EQUATIONS; UNBOUNDED-DOMAINS; GLOBAL ATTRACTOR;
D O I
10.1177/10812865231219199
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we study non-autonomous dynamical behavior of weakly damped wave equation in unbounded domain. First of all, we introduce the time-dependent locally uniform space. After that, the pullback asymptotical compactness is proved by applying the contractive function method. Eventually, we obtain the existence of ( H lu 1 ( R 3 )x L lu 2 ( R 3 ), H rho 1 ( R 3 )x L rho 1 ( R 3 )) -time-dependent attractor of wave equation.
引用
收藏
页码:944 / 958
页数:15
相关论文
共 19 条
[1]   EXISTENCE AND FINITE DIMENSIONALITY OF THE GLOBAL ATTRACTOR FOR EVOLUTION-EQUATIONS ON UNBOUNDED-DOMAINS [J].
ABERGEL, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) :85-108
[2]  
[Anonymous], 1969, Quelques mthodes de rsolution des problmes aux limites non linaires
[3]   Linear parabolic equations in locally uniform spaces [J].
Arrieta, JM ;
Rodriguez-Bernal, A ;
Cholewa, JW ;
Dlotko, T .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2004, 14 (02) :253-293
[4]   ATTRACTORS OF PARTIAL-DIFFERENTIAL EVOLUTION-EQUATIONS IN AN UNBOUNDED DOMAIN [J].
BABIN, AV ;
VISHIK, MI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 116 :221-243
[5]   Attractors for processes on time-dependent spaces. Applications to wave equations [J].
Conti, Monica ;
Pata, Vittorino ;
Temam, Roger .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (06) :1254-1277
[6]  
Di Plinio F., 2012, Bollettino dellUnione Matematica Italiana, V5, P19
[7]   TIME-DEPENDENT ATTRACTOR FOR THE OSCILLON EQUATION [J].
Di Plinio, Francesco ;
Duane, Gregory S. ;
Temam, Roger .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (01) :141-167
[8]  
Feireisl E., 1996, Differ. Inte- gral Equ., V9, P1147
[9]   Time-dependent attractor for plate equations on Rn [J].
Liu, Tingting ;
Ma, Qiaozhen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) :315-332
[10]   PULLBACK ATTRACTOR FOR A WEAKLY DAMPED WAVE EQUATION WITH SUP-CUBIC NONLINEARITY [J].
Mei, Xinyu ;
Xiong, Yangmin ;
Sun, Chunyou .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (02) :569-600