Peak sections and Bergman kernels on Kähler manifolds with complex hyperbolic cusps

被引:1
作者
Zhou, Shengxuan [1 ]
机构
[1] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
关键词
ASYMPTOTIC-EXPANSION; CURVATURE; METRICS;
D O I
10.1007/s00208-024-02798-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By revisiting Tian's peak section method, we obtain a localization principle of the Bergman kernels on Kahler manifolds with complex hyperbolic cusps, which is a generalization of Auvray-Ma-Marinescu's (Math Ann 379:51-1002, 2021) localization result Bergman kernels on punctured Riemann surfaces . Then we give some further estimates when the metric on the complex hyperbolic cusp is a Kahler-Einstein metric or when the manifold is a quotient of the complex ball. By applying our method directly to Poincare type cusps, we also get a partial localization result.
引用
收藏
页码:1973 / 2041
页数:69
相关论文
共 27 条
[1]   Comparison of Arakelov and Poincare metrics on X(0)(N) [J].
Abbes, A ;
Ullmo, E .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (02) :295-307
[2]   CONVERGENCE AND RIGIDITY OF MANIFOLDS UNDER RICCI CURVATURE BOUNDS [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1990, 102 (02) :429-445
[3]   Quotient of Bergman kernels on punctured Riemann surfaces [J].
Auvray, Hugues ;
Ma, Xiaonan ;
Marinescu, George .
MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (03) :2339-2367
[4]   Bergman kernels on punctured Riemann surfaces [J].
Auvray, Hugues ;
Ma, Xiaonan ;
Marinescu, George .
MATHEMATISCHE ANNALEN, 2021, 379 (3-4) :951-1002
[6]  
Catlin D, 1999, TRENDS MATH, P1
[7]  
Dai XZ, 2006, J DIFFER GEOM, V72, P1, DOI 10.4310/jdg/1143593124
[8]  
Datar V., 2021, ARXIV
[9]  
Demailly J.-P., 2012, Analytic methods in algebraic geometry
[10]  
Donaldson SK, 2001, J DIFFER GEOM, V59, P479, DOI 10.4310/jdg/1090349449