Efficient method to calculate the eigenvalues of the Zakharov-Shabat system

被引:3
作者
Cui, Shikun [1 ]
Wang, Zhen [2 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Zakharov-Shabat system; eigenvalue; numerical method; Chebyshev polynomials; 02.30.Ik; 02.30.Rz; 02.70.Jn; NONLINEAR FOURIER-TRANSFORM; COMPUTATION; ALGORITHMS; SPECTRA;
D O I
10.1088/1674-1056/acd686
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A numerical method is proposed to calculate the eigenvalues of the Zakharov-Shabat system based on Chebyshev polynomials. A mapping in the form of tanh(ax) is constructed according to the asymptotic of the potential function for the Zakharov-Shabat eigenvalue problem. The mapping can distribute Chebyshev nodes very well considering the gradient for the potential function. Using Chebyshev polynomials, tanh(ax) mapping, and Chebyshev nodes, the Zakharov-Shabat eigenvalue problem is transformed into a matrix eigenvalue problem. This method has good convergence for the Satsuma-Yajima potential and the convergence rate is faster than the Fourier collocation method. This method is not only suitable for simple potential functions but also converges quickly for a complex Y-shape potential. It can also be further extended to other linear eigenvalue problems.
引用
收藏
页数:7
相关论文
共 19 条
[1]   The time-splitting Fourier spectral method for the coupled Schrodinger-Boussinesq equations [J].
Bai, Dongmei ;
Wang, Jianli .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (03) :1201-1210
[2]   COMPUTATION OF THE DIRECT SCATTERING TRANSFORM FOR THE NONLINEAR SCHROEDINGER EQUATION [J].
BOFFETTA, G ;
OSBORNE, AR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 102 (02) :252-264
[3]   Semiclassical eigenvalue distribution of the Zakharov-Shabat eigenvalue problem [J].
Bronski, JC .
PHYSICA D, 1996, 97 (04) :376-397
[4]   Numerical algorithms for the direct spectral transform with applications to nonlinear Schrodinger type systems [J].
Burtsev, S ;
Camassa, R ;
Timofeyev, I .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (01) :166-186
[5]   Computing spectra of linear operators using the Floquet-Fourier-Hill method [J].
Deconinck, Bernard ;
Kutz, J. Nathan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 219 (01) :296-321
[6]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[7]   Rogue Waves in the (2+1)-Dimensional Nonlinear Schrodinger Equation with a Parity-Time-Symmetric Potential [J].
Liu, Yun-Kai ;
Li, Biao .
CHINESE PHYSICS LETTERS, 2017, 34 (01)
[8]  
MANAKOV SV, 1973, ZH EKSP TEOR FIZ+, V65, P505
[9]   Numerical algorithm with fourth-order accuracy for the direct Zakharov-Shabat problem [J].
Medvedev, Sergey ;
Vaseva, Irina ;
Chekhovskoy, Igor ;
Fedoruk, Mikhail .
OPTICS LETTERS, 2019, 44 (09) :2264-2267
[10]   The QR algorithm [J].
Parlett, BN .
COMPUTING IN SCIENCE & ENGINEERING, 2000, 2 (01) :38-42