On stable solutions of a weighted elliptic equation involving the fractional Laplacian

被引:0
|
作者
Nguyen, Thi Quynh [1 ]
Duong, Anh Tuan [2 ]
机构
[1] Hanoi Univ Ind, Fac Fundamental Sci, Hanoi, Vietnam
[2] Hanoi Univ Sci & Technol, Sch Appl Math & Informat, Hanoi, Vietnam
关键词
Choquard nonlinearity; fractional Laplacian; nonexistence results; sign-changing stable solutions; LIOUVILLE TYPE THEOREMS; CHOQUARD-EQUATIONS; POSITIVE SOLUTIONS; CLASSIFICATION; SYMMETRY; GUIDE;
D O I
10.1002/mma.9774
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following fractional Choquard equation with weight (-Delta)(s)u = (1/vertical bar x vertical bar(N-alpha) * h(x)vertical bar u vertical bar(p)) h(x)vertical bar u vertical bar(p-2)u in R-N, where 0 < s < 1, N > 2s, p > 2, alpha > 0 and h is a positive weight function satisfying h(x) >= C vertical bar x vertical bar(a) at infinity, for some a >= 0. We establish, in this paper, a Liouville type theorem saying that if max (N - 4s - 2a, 0) < alpha < N, then the above equation has no nontrivial stable solution. Our result, in particular, extends the result in [Le, Phuong. Bull. Aust. Math. Soc. 102 (2020), no. 3, 471-478.] from the Laplace operator to the fractional Laplacian.
引用
收藏
页码:2717 / 2727
页数:11
相关论文
共 50 条
  • [41] Global existence and dynamic structure of solutions for damped wave equation involving the fractional Laplacian
    Bidi, Younes
    Beniani, Abderrahmane
    Zennir, Khaled
    Himadan, Ahmed
    DEMONSTRATIO MATHEMATICA, 2021, 54 (01) : 245 - 258
  • [42] LEAST ENERGY SOLUTIONS FOR NONLINEAR SCHRODINGER EQUATION INVOLVING THE FRACTIONAL LAPLACIAN AND CRITICAL GROWTH
    Niu, Miaomiao
    Tang, Zhongwei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (07) : 3963 - 3987
  • [43] Marcinkiewicz estimates for solution to fractional elliptic Laplacian equation
    Huang, Shuibo
    Tian, Qiaoyu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1732 - 1738
  • [44] MULTIPLICITY RESULTS FOR A NONLINEAR ELLIPTIC PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN
    许勇强
    谭忠
    孙道恒
    Acta Mathematica Scientia, 2016, (06) : 1793 - 1803
  • [45] MULTIPLICITY RESULTS FOR A NONLINEAR ELLIPTIC PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN
    Xu, Yongqiang
    Tan, Zhong
    Sun, Daoheng
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (06) : 1793 - 1803
  • [46] Variational maximum principle for elliptic systems involving the fractional Laplacian
    Alikakos, N. D.
    Nikolouzos, M.
    Yannacopoulos, A. N.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (02): : 1095 - 1114
  • [47] A concave-convex elliptic problem involving the fractional Laplacian
    Braendle, C.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (01) : 39 - 71
  • [48] Algebraic topological techniques for elliptic problems involving fractional Laplacian
    Panda, Akasmika
    Choudhuri, Debajyoti
    Bahrouni, Anouar
    MANUSCRIPTA MATHEMATICA, 2023, 170 (3-4) : 563 - 579
  • [49] Algebraic topological techniques for elliptic problems involving fractional Laplacian
    Akasmika Panda
    Debajyoti Choudhuri
    Anouar Bahrouni
    manuscripta mathematica, 2023, 170 : 563 - 579
  • [50] Solutions to an inhomogeneous equation involving infinity Laplacian
    Liu, Fang
    Yang, Xiao-Ping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (14) : 5693 - 5701