Lessons Learned on Machine Learning for Computer Security

被引:0
作者
Arp, Daniel [1 ,2 ]
Quiring, Erwin [3 ,4 ]
Pendlebury, Feargus [2 ]
Warnecke, Alexander [1 ]
Pierazzi, Fabio [5 ]
Wressnegger, Christian [6 ,7 ]
Cavallaro, Lorenzo [2 ]
Rieck, Konrad [1 ]
机构
[1] Tech Univ Berlin, Berlin, Germany
[2] UCL, London, England
[3] ICSI, Bochum, Germany
[4] Ruhr Univ Bochum, Bochum, Germany
[5] Kings Coll London, London, England
[6] KASTEL Secur Res Lab, Karlsruhe, England
[7] Karlsruhe Inst Technol, Karlsruhe, Germany
关键词
Privacy; Machine learning; Computer security;
D O I
10.1109/MSEC.2023.3287207
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We identify 10 generic pitfalls that can affect the experimental outcome of AI driven solutions in computer security. We find that they are prevalent in the literature and provide recommendations for overcoming them in the future.
引用
收藏
页码:72 / 77
页数:6
相关论文
共 50 条
  • [21] Blockchain and Machine Learning: A Critical Review on Security
    Taherdoost, Hamed
    INFORMATION, 2023, 14 (05)
  • [22] Machine Learning for Cloud Security: A Systematic Review
    Nassif, Ali Bou
    Abu Talib, Manar
    Nasir, Qassim
    Albadani, Halah
    Dakalbab, Fatima Mohamad
    IEEE ACCESS, 2021, 9 : 20717 - 20735
  • [23] Lessons (Machine) Learned From COVID-19
    Sullivan, Timothy
    JOURNAL OF INFECTIOUS DISEASES, 2024, 229 (01) : 7 - 9
  • [24] Trustworthy machine learning in the context of security and privacy
    Upreti, Ramesh
    Lind, Pedro G.
    Elmokashfi, Ahmed
    Yazidi, Anis
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2024, 23 (03) : 2287 - 2314
  • [25] Machine Learning-based Estimation of Story Points in Agile Development: Industrial Experience and Lessons Learned
    Abadeer, Macarious
    Sabetzadeh, Mehrdad
    29TH IEEE INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE WORKSHOPS (REW 2021), 2021, : 106 - 115
  • [26] Applying Machine-Learning Methods to Laser Acceleration of Protons: Lessons Learned From Synthetic Data
    Desai, Ronak
    Zhang, Thomas
    Felice, John J.
    Oropeza, Ricky
    Smith, Joseph R.
    Kryshchenko, Alona
    Orban, Chris
    Dexter, Michael L.
    Patnaik, Anil K.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2025, 65 (03)
  • [27] Machine learning approaches for formation matrix volume prediction from well logs: Insights and lessons learned
    Kannaiah, Pamidi Venkata Durga
    Maurya, Neetish Kumar
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 229
  • [28] Logic, Machine Learning, and Security
    Subrahmanian, V. S.
    FLEXIBLE QUERY ANSWERING SYSTEMS, 2019, 11529 : 3 - 6
  • [29] Security for Distributed Machine Learning
    Gomez, Laurent
    Yu, Tianchi
    Duverger, Patrick
    PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON SECURITY AND CRYPTOGRAPHY, SECRYPT 2023, 2023, : 838 - 843
  • [30] Machine learning and cyber security
    Karius, Sebastian
    Knoechel, Mandy
    Hesse, Sascha
    Reiprich, Tim
    IT-INFORMATION TECHNOLOGY, 2023, 65 (4-5): : 142 - 154