Lessons Learned on Machine Learning for Computer Security

被引:0
|
作者
Arp, Daniel [1 ,2 ]
Quiring, Erwin [3 ,4 ]
Pendlebury, Feargus [2 ]
Warnecke, Alexander [1 ]
Pierazzi, Fabio [5 ]
Wressnegger, Christian [6 ,7 ]
Cavallaro, Lorenzo [2 ]
Rieck, Konrad [1 ]
机构
[1] Tech Univ Berlin, Berlin, Germany
[2] UCL, London, England
[3] ICSI, Bochum, Germany
[4] Ruhr Univ Bochum, Bochum, Germany
[5] Kings Coll London, London, England
[6] KASTEL Secur Res Lab, Karlsruhe, England
[7] Karlsruhe Inst Technol, Karlsruhe, Germany
关键词
Privacy; Machine learning; Computer security;
D O I
10.1109/MSEC.2023.3287207
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We identify 10 generic pitfalls that can affect the experimental outcome of AI driven solutions in computer security. We find that they are prevalent in the literature and provide recommendations for overcoming them in the future.
引用
收藏
页码:72 / 77
页数:6
相关论文
共 50 条
  • [1] Machine learning for computer security
    Chan, Philip K.
    Lippmann, Richard P.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 2669 - 2672
  • [2] Machine learning meets visualization - Experiences and lessons learned
    Ngo, Quynh Quang
    Dennig, Frederik L.
    Keim, Daniel A.
    Sedlmair, Michael
    IT-INFORMATION TECHNOLOGY, 2022, 64 (4-5): : 169 - 180
  • [3] Integrating Computer Security into the Undergraduate Software Engineering Classes: Lessons Learned
    Pancho-Festin, Susan
    Mendoza, Marie Jo-anne
    2014 INTERNATIONAL CONFERENCE ON TEACHING, ASSESSMENT AND LEARNING (TALE), 2014, : 395 - 397
  • [4] SoK: Explainable Machine Learning for Computer Security Applications
    Nadeem, Azqa
    Vos, Daniel
    Cao, Clinton
    Pajola, Luca
    Dieck, Simon
    Baumgartner, Robert
    Verwer, Sicco
    2023 IEEE 8TH EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY, EUROS&P, 2023, : 221 - 240
  • [5] Machine-Learning Lessons Learned: Optimizing Transcriptomic Classifiers of Mental Disorders
    Glatt, Stephen
    Tylee, Daniel S.
    Quinn, Thomas P.
    Hess, Jonathan L.
    BIOLOGICAL PSYCHIATRY, 2016, 79 (09) : 169S - 169S
  • [6] Research on computer network information security based on improved machine learning
    Yu Guangxu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (04) : 6889 - 6900
  • [7] Computer vision, machine learning based monocular biomechanical and security analysis
    Kumar, Arun
    Sharma, Himanshu
    Mathur, Shruti
    Sharma, Dimpal
    Khandelwal, Girraj
    Sharma, Gajanand
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (03) : 685 - 693
  • [8] Cognitive Load Monitoring With Wearables-Lessons Learned From a Machine Learning Challenge
    Gjoreski, Martin
    Mahesh, Bhargavi
    Kolenik, Tine
    Uwe-Garbas, Jens
    Seuss, Dominik
    Gjoreski, Hristijan
    Lustrek, Mitja
    Gams, Matjaz
    Pejovic, Veljko
    IEEE ACCESS, 2021, 9 : 103325 - 103336
  • [9] Machine learning applications to personnel selection: Current illustrations, lessons learned, and future research
    Campion, Michael A.
    Campion, Emily D.
    PERSONNEL PSYCHOLOGY, 2023, 76 (04) : 993 - 1009
  • [10] Clinical study applying machine learning to detect a rare disease: results and lessons learned
    Hersh, William R.
    Cohen, Aaron M.
    Nguyen, Michelle M.
    Bensching, Katherine L.
    Deloughery, Thomas G.
    JAMIA OPEN, 2022, 5 (02)