Nilpotent Lie algebras with two centralizer dimensions over a finite field

被引:0
作者
Kundu, Rijubrata [1 ]
Naik, Tushar Kanta [2 ]
Singh, Anupam [3 ]
机构
[1] Indian Inst Sci Educ & Res Mohali, Sect 81, Mohali 140306, India
[2] Natl Inst Sci Educ & Res, OCC Homi Bhabha Natl Inst, Sch Math Sci, PO Jatni, Khurja 752050, Odisha, India
[3] Indian Inst Sci Educ & Res Pune, Dr Homi Bhabha Rd, Pune 411008, India
关键词
Nilpotent Lie algebras; Breadth type; Semifields; CLASSIFICATION;
D O I
10.1016/j.jalgebra.2023.06.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A result of Barnea and Isaacs states that if L is a finite dimensional nilpotent Lie algebra with exactly two distinct centralizer dimensions, then nilpotency class of L is either 2 or 3. In this article, we classify all such finite dimensional 3-step nilpotent Lie algebras over a finite field. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:362 / 388
页数:27
相关论文
共 19 条
[1]   Lie algebras with few centralizer dimensions [J].
Barnea, Y ;
Isaacs, IM .
JOURNAL OF ALGEBRA, 2003, 259 (01) :284-299
[2]   Six-dimensional nilpotent Lie algebras [J].
Cicalo, Serena ;
de Graaf, Willem A. ;
Schneider, Csaba .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (01) :163-189
[3]   A survey of finite semifields [J].
Cordero, M ;
Wene, GP .
DISCRETE MATHEMATICS, 1999, 208 :125-137
[4]   Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2 [J].
de Graaf, Willem A. .
JOURNAL OF ALGEBRA, 2007, 309 (02) :640-653
[5]   Nilpotent Lie algebras of class 4 with the derived subalgebra of dimension 3 [J].
Johari, Farangis ;
Niroomand, Peyman ;
Parvizi, Mohsen .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (02) :521-532
[6]  
Kantor W.M., 2006, FINITE GEOMETRIES GR, P103, DOI DOI 10.1515/9783110199741.103
[7]   On nilpotent Lie algebras of small breadth [J].
Khuhirun, Borworn ;
Misra, Kailash C. ;
Stitzinger, Ernie .
JOURNAL OF ALGEBRA, 2015, 444 :328-338
[8]   Heisenberg groups, semifields, and translation planes [J].
Knarr, Norbert ;
Stroppel, Markus J. .
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2015, 56 (01) :115-127
[9]  
Knuth D.E., 1965, J ALGEBRA, V2, P182
[10]   Nilpotent Lie algebras of breadth type (0,3) [J].
Kundu, Rijubrata ;
Naik, Tushar Kanta ;
Singh, Anupam .
COMMUNICATIONS IN ALGEBRA, 2023, 51 (09) :3792-3809