Autonomous motion and control of lower limb exoskeleton rehabilitation robot

被引:5
|
作者
Gao, Xueshan [1 ]
Zhang, Pengfei [1 ]
Peng, Xuefeng [2 ]
Zhao, Jianbo [2 ]
Liu, Kaiyuan [1 ]
Miao, Mingda [1 ]
Zhao, Peng [1 ]
Luo, Dingji [1 ]
Li, Yige [1 ]
机构
[1] Beijing Inst Technol, Sch Mechatron Engn, Beijing, Peoples R China
[2] China Shipbldg Ind Corp, Inst 713, Zhengzhou, Henan, Peoples R China
来源
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY | 2023年 / 11卷
关键词
improved adaptive particle swarm; admittance control; dual RBF adaptive sliding mode control; active control of lower limb exoskeleton; human lower limb rehabilitation frontiers; CONTROL STRATEGY; IDENTIFICATION;
D O I
10.3389/fbioe.2023.1223831
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Introduction: The lower limb exoskeleton rehabilitation robot should perform gait planning based on the patient's motor intention and training status and provide multimodal and robust control schemes in the control strategy to enhance patient participation.Methods: This paper proposes an adaptive particle swarm optimization admittance control algorithm (APSOAC), which adaptively optimizes the weights and learning factors of the PSO algorithm to avoid the problem of particle swarm falling into local optimal points. The proposed improved adaptive particle swarm algorithm adjusts the stiffness and damping parameters of the admittance control online to reduce the interaction force between the patient and the robot and adaptively plans the patient's desired gait profile. In addition, this study proposes a dual RBF neural network adaptive sliding mode controller (DRNNASMC) to track the gait profile, compensate for frictional forces and external perturbations generated in the human-robot interaction using the RBF network, calculate the required moments for each joint motor based on the lower limb exoskeleton dynamics model, and perform stability analysis based on the Lyapunov theory.Results and discussion: Finally, the efficiency of the APSOAC and DRNNASMC algorithms is demonstrated by active and passive walking experiments with three healthy subjects, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation
    Zhu, Zhiyong
    Liu, Lingyan
    Zhang, Wenbin
    Jiang, Cong
    Wang, Xingsong
    Li, Jie
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [2] DESIGN AND MOTION CHARACTERISATION OF A WEARABLE LOWER LIMB REHABILITATION EXOSKELETON ROBOT
    Zheng Y.
    Wu Z.
    Hou Y.
    Zhao J.
    Jiang Y.
    Xiao M.
    International Journal of Mechatronics and Applied Mechanics, 2024, 2024 (16): : 67 - 75
  • [3] Lower limb rehabilitation exoskeleton robot: A review
    Zhou, Jinman
    Yang, Shuo
    Xue, Qiang
    ADVANCES IN MECHANICAL ENGINEERING, 2021, 13 (04)
  • [4] Development of a Exoskeleton Robot for Lower Limb Rehabilitation
    Gan, Di
    Qiu, Shiyuan
    Guan, Zheng
    Shi, Chao
    Li, Zhijun
    IEEE ICARM 2016 - 2016 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM), 2016, : 312 - 317
  • [5] Gait Trajectory Control Technology of The Lower Limb Exoskeleton Rehabilitation Robot
    Liu, Kaiyuan
    Wang, Fang
    Gao, Xueshan
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 976 - 981
  • [6] Modeling and Design on Control System of Lower Limb Rehabilitation Exoskeleton Robot
    Gilbert, Masengo
    Zhang, Xiaodong
    Yin, Gui
    2016 13TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2016, : 348 - 352
  • [7] Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition
    Su, Dongnan
    Hu, Zhigang
    Wu, Jipeng
    Shang, Peng
    Luo, Zhaohui
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [8] Neural Network Control of Lower Limb Rehabilitation Exoskeleton with Repetitive Motion
    Huang, Deqing
    Ma, Lei
    Yang, Yong
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 3403 - 3408
  • [9] Development of a Pneumatic Exoskeleton Robot for Lower Limb Rehabilitation
    Goergen, R.
    Valdiero, A. C.
    Rasia, L. A.
    Oberdorfer, M.
    de Souza, J. P.
    Goncalves, R. S.
    2019 IEEE 16TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2019, : 187 - 192
  • [10] Synthesis and experiment of a lower limb exoskeleton rehabilitation robot
    Li, Jian
    Chen, Diansheng
    Tao, Chunjing
    Li, Hui
    INDUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL, 2017, 44 (03) : 264 - 274