A Deep Learning Driven Feature Based Steganalysis Approach

被引:1
作者
Li, Yuchen [1 ]
Ling, Baohong [1 ,2 ]
Hu, Donghui [1 ]
Zheng, Shuli [1 ]
Zhang, Guoan [3 ]
机构
[1] Hefei Univ Technol, Coll Comp Sci & Informat Engn, Hefei 230009, Peoples R China
[2] Anhui Broadcasting Movie & Televis Coll, Coll Informat Engn, Hefei 230011, Peoples R China
[3] Kings Coll London, Fac Nat & Math Sci, Dept Informat, London WC2R2LS, England
基金
中国国家自然科学基金;
关键词
Image steganalysis; algorithm mismatch; convolutional neural network; JPEG images; IMAGE STEGANOGRAPHY; JPEG; MODEL;
D O I
10.32604/iasc.2023.029983
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The goal of steganalysis is to detect whether the cover carries the secret information which is embedded by steganographic algorithms. The traditional ste-ganalysis detector is trained on the stego images created by a certain type of ste-ganographic algorithm, whose detection performance drops rapidly when it is applied to detect another type of steganographic algorithm. This phenomenon is called as steganographic algorithm mismatch in steganalysis. To resolve this pro-blem, we propose a deep learning driven feature-based approach. An advanced steganalysis neural network is used to extract steganographic features, different pairs of training images embedded with steganographic algorithms can obtain diverse features of each algorithm. Then a multi-classifier implemented as lightgbm is used to predict the matching algorithm. Experimental results on four types of JPEG steganographic algorithms prove that the proposed method can improve the detection accuracy in the scenario of steganographic algorithm mismatch.
引用
收藏
页码:2213 / 2225
页数:13
相关论文
共 38 条
  • [1] Image Steganography in Spatial Domain: Current Status, Techniques, and Trends
    Alhomoud, Adeeb M.
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 27 (01) : 69 - 88
  • [2] [Anonymous], 2013, P 1 ACM WORKSH INF H, DOI DOI 10.1145/2482513.2482514
  • [3] Bas Patrick, 2011, Information Hiding. 13th International Conference, IH 2011. Revised Selected Papers, P59, DOI 10.1007/978-3-642-24178-9_5
  • [4] Efficient Forgery Detection Approaches for Digital Color Images
    Baumy, Amira
    Algarni, Abeer D.
    Abdalla, Mahmoud
    El-Shafai, Walid
    Abd El-Samie, Fathi E.
    Soliman, Naglaa F.
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (02): : 3257 - 3276
  • [5] Bengio Y., 2009, P 26 ANN INT C MACH, P41, DOI DOI 10.1145/1553374.1553380
  • [6] Deep Residual Network for Steganalysis of Digital Images
    Boroumand, Mehdi
    Chen, Mo
    Fridrich, Jessica
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2019, 14 (05) : 1181 - 1193
  • [7] An Efficient Sound and Data Steganography Based Secure Authentication System
    Datta, Debajit
    Garg, Lalit
    Srinivasan, Kathiravan
    Inoue, Atsushi
    Reddy, G. Thippa
    Reddy, M. Praveen Kumar
    Ramesh, K.
    Nasser, Nidal
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (01): : 723 - 751
  • [8] Analysis of various data security techniques of steganography: A survey
    Dhawan, Sachin
    Gupta, Rashmi
    [J]. INFORMATION SECURITY JOURNAL, 2021, 30 (02): : 63 - 87
  • [9] Feng CY, 2017, IEEE IMAGE PROC, P500, DOI 10.1109/ICIP.2017.8296331
  • [10] Minimizing Additive Distortion in Steganography Using Syndrome-Trellis Codes
    Filler, Tomas
    Judas, Jan
    Fridrich, Jessica
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2011, 6 (03) : 920 - 935