Self-healing polymers for space: A study on autonomous repair performance and response to space radiation

被引:5
|
作者
Pernigoni, Laura [1 ]
Lafont, Ugo [2 ]
Grande, Antonio M. [1 ]
机构
[1] Politecn Milan, Dept Aerosp Sci & Technol, Via Masa 34, I-20156 Milan, Italy
[2] European Space Agcy, European Space Res & Technol Ctr, Keplerlaan 1,POB 299, NL-2200 AG Noordwijk, Netherlands
关键词
Self-healing polymers; Space radiation; Composites; Inflatable space structures; NETWORKS;
D O I
10.1016/j.actaastro.2023.05.032
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
One of the main challenges of space exploration is to properly protect astronauts from the hazards of the space environment. Space suits were hence created to protect crewmembers during extravehicular activities, but they are currently unable to properly withstand damage after, for example, impacts with micrometeoroids and orbital debris (MMOD), and they would depressurize and collapse if punctured, with catastrophic consequences. In this context, the possibility of integrating self-healing materials into spacesuits has drawn the attention of the scientific community, as it would lead to autonomous damage restoration and subsequently increased safety and operational life. Nevertheless, the effects of space environment on these materials are still to be determined and could lead to a significant decrease of their overall performance. The here presented study focuses on a first example of application to a space suit, analyzing the healing performance of a set of candidate self-healing polymers before and after exposure to simulated space radiation. A comparison of bilayers and nanocomposites having these polymers as matrices is also made in the non-irradiated case. This research also aims at filling the gap between standard characterization of self-healing materials (e.g.: scratch, impact, and puncture tests) and assessment of the effects of space radiation on them by combining these two aspects. Understanding if and how radiation can affect damage recovery performance is in fact fundamental to determine whether a given self-healing material can actually be used for space applications. The self-healing response is assessed through in-situ flow rate measurements after puncture damage. Maximum and minimum flow rate, the time between them and the air volume lost within the 3 min following puncture are collected as healing performance parameters. For the neat materials, the same tests are then repeated on gamma-ray irradiated samples to study the variation in self-repairing performance after exposure to simulated space radiation. Results show that the healing performance is higher in systems with lower viscous response and that it decreases after irradiation. A further analysis of the effects of space environment on the presented materials is hence required. The NASA HZETRN2015 (High Z and Energy TRaNsport, 2015 version) software is also used to simulate the action of galactic cosmic rays on the space suit during extravehicular activity. The classic suit multilayer is compared with configurations in which the standard bladder is replaced with a layer of each analyzed material to identify the most promising candidates and determine whether the addition of nanofillers significantly increases the shielding ability.
引用
收藏
页码:627 / 634
页数:8
相关论文
共 50 条
  • [1] Assessment of radiation shielding properties of self-healing polymers and nanocomposites for a space habitat case study under GCR and LEO radiation
    Pernigoni, Laura
    Lafont, Ugo
    Grande, Antonio Mattia
    CEAS SPACE JOURNAL, 2024, 16 (05) : 525 - 533
  • [2] Fifteen chemistries for autonomous external self-healing polymers and composites
    Hillewaere, Xander K. D.
    Du Prez, Filip E.
    PROGRESS IN POLYMER SCIENCE, 2015, 49-50 : 121 - 153
  • [3] High-Performance Self-Healing Polymers
    Peng, Yan
    Gu, Shiyu
    Wu, Qi
    Xie, Zhengtian
    Wu, Jinrong
    ACCOUNTS OF MATERIALS RESEARCH, 2023, 4 (04): : 323 - 333
  • [4] Imaging the Molecular Motions of Autonomous Repair in a Self-Healing Polymer
    van der Kooij, Hanne M.
    Susa, Arijana
    Garcia, Santiago J.
    van der Zwaag, Sybrand
    Sprakel, Joris
    ADVANCED MATERIALS, 2017, 29 (26)
  • [5] Self-Healing of Polymers and Polymer Composites
    Irzhak, Vadim I.
    Uflyand, Igor E.
    Dzhardimalieva, Gulzhian I.
    POLYMERS, 2022, 14 (24)
  • [6] Self-healing polymers: evaluation of self-healing process via non-destructive techniques
    Bekas, D. G.
    Baltzis, D.
    Tsirka, K.
    Exarchos, D.
    Matikas, T.
    Meristoudi, A.
    Pispas, S.
    Paipetis, A. S.
    PLASTICS RUBBER AND COMPOSITES, 2016, 45 (04) : 147 - 156
  • [7] Self-Healing Polymers Designed for Underwater Applications
    Afrinaldi, Bambang
    Yuliati, Frita
    Judawisastra, Hermawan
    Asri, Lia A. T. W.
    ADVANCES IN POLYMER TECHNOLOGY, 2023, 2023
  • [8] Shape memory effects in self-healing polymers
    Hornat, Chris C.
    Urban, Marek W.
    PROGRESS IN POLYMER SCIENCE, 2020, 102
  • [9] Review on Self-Healing Thermal Barrier Coatings for Space Applications
    Manikandan, S. G. K.
    Kamaraj, M.
    Jebasihamony, C.
    MATERIALS PERFORMANCE AND CHARACTERIZATION, 2021, 10 (01) : 790 - 818
  • [10] Preparation of microcapsules for self-healing polymers
    Czeller, Anna
    Czigany, Tibor
    MATERIALS SCIENCE, TESTING AND INFORMATICS VI, 2013, 729 : 205 - 209