Enriched purity and presentability in Banach spaces

被引:2
作者
Rosicky, J. [1 ,2 ]
机构
[1] Masaryk Univ, Fac Sci, Dept Math & Stat, Brno, Czech Republic
[2] Masaryk Univ, Fac Sci, Dept Math & Stat, Kotlarska 2, Brno 61137, Czech Republic
关键词
Banach spaces; linear maps; finite-dimensional; separable codomains; metric spaces; UNIQUENESS; IDEALS;
D O I
10.1080/00927872.2023.2228412
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The category Ban of Banach spaces and linear maps of norm = 1 is locally N-1-presentable but not locally finitely presentable. We prove, however, that Ban is locally finitely presentable in the enriched sense over complete metric spaces. Moreover, in this sense, pure morphisms are just ideals of Banach spaces. We characterize classes of Banach spaces approximately injective with respect to sets of morphisms having finite-dimensional domains and separable codomains.
引用
收藏
页码:5242 / 5262
页数:21
相关论文
共 30 条
  • [1] ALMOST ISOMETRIC IDEALS IN BANACH SPACES
    Abrahamsen, Trond A.
    Lima, Vegard
    Nygaard, Olav
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2014, 56 (02) : 395 - 407
  • [2] Approximate injectivity and smallness in metric-enriched categories
    Adamek, J.
    Rosicky, J.
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (06)
  • [3] Weak factorization systems and topological functors
    Adámek, J
    Herrlich, H
    Rosicky, J
    Tholen, W
    [J]. APPLIED CATEGORICAL STRUCTURES, 2002, 10 (03) : 237 - 249
  • [4] Adamek J., 1994, LONDON MATH SOC LECT, V189
  • [5] Avil?s A., 2018, LECT NOTES MATH
  • [6] Buhler T., 2018, Functional Analysis
  • [7] Di Liberti I, 2022, THEOR APPL CATEG, V38, P661
  • [8] Edwards C. H., 1974, ADV CALCULUS SEVERAL
  • [9] Garbulinska J., 2011, EXTRACTA MATH, V26, P235
  • [10] A note on universal operators between separable Banach spaces
    Garbulinska-Wegrzyn, Joanna
    Kubis, Wieslaw
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)