Davis-Wielandt-Berezin radius inequalities of reproducing kernel Hilbert space operators

被引:1
作者
Sen, Anirban [1 ]
Bhunia, Pintu [2 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, W Bengal, India
[2] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
关键词
Davis-Wielandt radius; Berezin norm; Berezin number; Reproducing kernel Hilbert space; NUMERICAL RADIUS; UPPER-BOUNDS;
D O I
10.1007/s13370-023-01089-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several upper and lower bounds of the Davis-Wielandt-Berezin radius of bounded linear operators defined on a reproducing kernel Hilbert space are given. Further, an inequality involving the Berezin number and the Davis-Wielandt-Berezin radius for the sum of two bounded linear operators is obtained, namely, if A and B are reproducing kernel Hilbert space operators, then eta(A + B) <= eta(A) + eta(B) + ber( A* B + B* A), where eta(center dot) and ber(center dot) are the Davis-Wielandt-Berezin radius and the Berezin number, respectively.
引用
收藏
页数:14
相关论文
共 33 条
[1]   BOUNDS OF NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS USING t-ALUTHGE TRANSFORM [J].
Bag, Santanu ;
Bhunia, Pintu ;
Paul, Kallol .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03) :991-1004
[2]   New estimations for the Berezin number inequality [J].
Bakherad, Mojtaba ;
Yamanci, Ulas .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
[3]   Some operator inequalities associated with Kantorovich and Holder-McCarthy inequalities and their applications [J].
Basaran, Hamdullah ;
Gurdal, Mehmet ;
Guncan, Aye Nur .
TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) :523-532
[4]  
Berezin F. A., 1972, Math. USSR-Izv., V6, P1117
[5]  
Berezin FA., 1974, Math. USSR Izvest, V8, P1109, DOI [10.1070/IM1974v008n05ABEH002140, DOI 10.1070/IM1974V008N05ABEH002140]
[6]  
Bhunia P., 2022, INFOSYS SCI FDN SERI
[7]   Development of the Berezin Number Inequalities [J].
Bhunia, Pintu ;
Sen, Anirban ;
Paul, Kallol .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (07) :1219-1228
[8]   Inequalities Involving Berezin Norm and Berezin Number [J].
Bhunia, Pintu ;
Paul, Kallol ;
Sen, Anirban .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (01)
[9]   Development of inequalities and characterization of equality conditions for the numerical radius [J].
Bhunia, Pintu ;
Paul, Kallol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 :306-315
[10]   Proper Improvement of Well-Known Numerical Radius Inequalities and Their Applications [J].
Bhunia, Pintu ;
Paul, Kallol .
RESULTS IN MATHEMATICS, 2021, 76 (04)