Fast Computational Approach to the Levenberg-Marquardt Algorithm for Training Feedforward Neural Networks

被引:16
|
作者
Bilski, Jaroslaw [1 ]
Smolag, Jacek [1 ]
Kowalczyk, Bartosz [1 ]
Grzanek, Konrad [2 ]
Izonin, Ivan [3 ]
机构
[1] Czestochowa Tech Univ, Dept Computat Intelligence, Al Armii Krajowej 36, PL-42200 Czestochowa, Poland
[2] Univ Social Sci, Inst Informat Technol, Ul Sienkiewicza 9, PL-90113 Lodz, Poland
[3] Lviv Polytech Natl Univ, Dept Artificial Intelligence, UA-79905 Lvov, Ukraine
关键词
feed-forward neural network; neural network learning algorithm; Levenberg-Marquardt algorithm; QR decomposition; Givens rotation; RECOGNITION;
D O I
10.2478/jaiscr-2023-0006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a parallel approach to the Levenberg-Marquardt algorithm (LM). The use of the Levenberg-Marquardt algorithm to train neural networks is associated with significant computational complexity, and thus computation time. As a result, when the neural network has a big number of weights, the algorithm becomes practically ineffective. This article presents a new parallel approach to the computations in Levenberg-Marquardt neural network learning algorithm. The proposed solution is based on vector instructions to effectively reduce the high computational time of this algorithm. The new approach was tested on several examples involving the problems of classification and function approximation, and next it was compared with a classical computational method. The article presents in detail the idea of parallel neural network computations and shows the obtained acceleration for different problems.
引用
收藏
页码:45 / 61
页数:17
相关论文
共 50 条
  • [1] LOCAL LEVENBERG-MARQUARDT ALGORITHM FOR LEARNING FEEDFORWAD NEURAL NETWORKS
    Bilski, Jaroslaw
    Kowalczyk, Bartosz
    Marchlewska, Alina
    Zurada, Jacek M.
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2020, 10 (04) : 299 - 316
  • [2] Adaptive Levenberg-Marquardt Algorithm: A New Optimization Strategy for Levenberg-Marquardt Neural Networks
    Yan, Zhiqi
    Zhong, Shisheng
    Lin, Lin
    Cui, Zhiquan
    MATHEMATICS, 2021, 9 (17)
  • [3] The Parallel Modification to the Levenberg-Marquardt Algorithm
    Bilski, Jaroslaw
    Kowalczyk, Bartosz
    Grzanek, Konrad
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 15 - 24
  • [4] A New Computational Approach to the Levenberg-Marquardt Learning Algorithm
    Bilski, Jaroslaw
    Kowalczyk, Barosz
    Smolag, Jacek
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2022, PT I, 2023, 13588 : 16 - 26
  • [5] Efficient computation of the Levenberg-Marquardt algorithm for feedforward networks with linear outputs
    de Chazal, Philip
    McDonnell, Mark D.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 68 - 75
  • [6] Backpropagation and Levenberg-Marquardt Algorithm for Training Finite Element Neural Network
    Reynaldi, Arnold
    Lukas, Samuel
    Margaretha, Helena
    2012 SIXTH UKSIM/AMSS EUROPEAN SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS), 2012, : 89 - 94
  • [7] Research on EEG Classification with Neural Networks Based on the Levenberg-Marquardt Algorithm
    Chen, Yue
    Zhang, Shaobai
    INFORMATION COMPUTING AND APPLICATIONS, PT 2, 2012, 308 : 195 - 202
  • [8] Levenberg-Marquardt Learning Algorithm for Quaternion-Valued Neural Networks
    Popa, Calin-Adrian
    PROCEEDINGS OF 2016 18TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2016, : 272 - 278
  • [9] A Novel Modification on the Levenberg-Marquardt Algorithm for Avoiding Overfitting in Neural Network Training
    Iplikci, Serdar
    Bilgi, Batuhan
    Menemen, Ali
    Bahtiyar, Bedri
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: DEEP LEARNING, PT II, 2019, 11728 : 201 - 207
  • [10] A Layer-by-Layer Levenberg-Marquardt Algorithm for Feedforward Multilayer Perceptron
    Kwak, Young-Tae
    Jo, Heeseung
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (02): : 505S - 511S