Machine learning for prediction of all-cause mortality after transcatheter aortic valve implantation

被引:5
作者
Kwiecinski, Jacek [1 ,2 ,3 ]
Dabrowski, Maciej [1 ]
Nombela-Franco, Luis [4 ]
Grodecki, Kajetan [5 ]
Pieszko, Konrad [2 ,3 ,6 ]
Chmielak, Zbigniew [1 ]
Pylko, Anna [1 ]
Hennessey, Breda [4 ]
Kalinczuk, Lukasz [1 ]
Tirado-Conte, Gabriela [4 ]
Rymuza, Bartosz [5 ]
Kochman, Janusz [5 ]
Opolski, Maksymilian P. [1 ]
Huczek, Zenon [5 ]
Dweck, Marc R. [7 ]
Dey, Damini [1 ,2 ,3 ]
Jimenez-Quevedo, Pilar [4 ]
Slomka, Piotr [1 ,2 ,3 ]
Witkowski, Adam [1 ]
机构
[1] Inst Cardiol, Dept Intervent Cardiol & Angiol, Warsaw, Poland
[2] Cedars Sinai Med Ctr, Div Artificial Intelligence Med & Biomed Sci, Dept Med, 8700 Beverly Blvd,Metro 203, Los Angeles, CA 90048 USA
[3] Cedars Sinai Med Ctr, Biomed Sci, 8700 Beverly Blvd,Metro 203, Los Angeles, CA 90048 USA
[4] Hosp Clin San Carlos, Cardiovasc Inst, IdISSC, Madrid, Spain
[5] Med Univ Warsaw, Dept Cardiol 1, Warsaw, Poland
[6] Univ Zielona Gora, Dept Intervent Cardiol & Cardiac Surg, Zielona Gora, Poland
[7] Univ Edinburgh, Ctr Cardiovasc Sci, Edinburgh, Scotland
关键词
Artificial intelligence; Machine learning; Transcatheter aortic valve implantation; Aortic stenosis; IN-HOSPITAL MORTALITY; ARTIFICIAL-INTELLIGENCE; RISK; MODELS; VALIDATION; STENOSIS; SCORE;
D O I
10.1093/ehjqcco/qcad002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Prediction of adverse events in mid-term follow-up after transcatheter aortic valve implantation (TAVI) is challenging. We sought to develop and validate a machine learning model for prediction of 1-year all-cause mortality in patients who underwent TAVI and were discharged following the index procedure. Methods and results The model was developed on data of patients who underwent TAVI at a high-volume centre between January 2013 and March 2019. Machine learning by extreme gradient boosting was trained and tested with repeated 10-fold hold-out testing using 34 pre- and 25 peri-procedural clinical variables. External validation was performed on unseen data from two other independent high-volume TAVI centres. Six hundred four patients (43% men, 81 +/- 5 years old, EuroSCORE II 4.8 [3.0-6.3]%) in the derivation and 823 patients (46% men, 82 +/- 5 years old, EuroSCORE II 4.7 [2.9-6.0]%) in the validation cohort underwent TAVI and were discharged home following the index procedure. Over the 12 months of follow-up, 68 (11%) and 95 (12%) subjects died in the derivation and validation cohorts, respectively. In external validation, the machine learning model had an area under the receiver-operator curve of 0.82 (0.78-0.87) for prediction of 1-year all-cause mortality following hospital discharge after TAVI, which was superior to pre- and peri-procedural clinical variables including age 0.52 (0.46-0.59) and the EuroSCORE II 0.57 (0.51-0.64), P Conclusion Machine learning based on readily available clinical data allows accurate prediction of 1-year all-cause mortality following a successful TAVI.
引用
收藏
页码:768 / 777
页数:10
相关论文
共 31 条
  • [1] Artificial Intelligence Trumps TAVI2-SCORE and CoreValve Score in Predicting 1-Year Mortality Post-Transcatheter Aortic Valve Replacement
    Agasthi, Pradyumna
    Ashraf, Hasan
    Pujari, Sai Harika
    Girardo, Marlene E.
    Tseng, Andrew
    Mookadam, Farouk
    Venepally, Nithin R.
    Buras, Matthew
    Khetarpal, Banveet K.
    Allam, Mohamed
    Eleid, Mackram F.
    Greason, Kevin L.
    Beohar, Nirat
    Siegel, Robert J.
    Sweeney, John
    Fortuin, Floyd D.
    Holmes, David R.
    Arsanjani, Reza
    [J]. CARDIOVASCULAR REVASCULARIZATION MEDICINE, 2021, 24 : 33 - 41
  • [2] Patients at low surgical risk as defined by the Society of Thoracic Surgeons Score undergoing isolated interventional or surgical aortic valve implantation: in-hospital data and 1-year results from the German Aortic Valve Registry (GARY)
    Bekeredjian, Raffi
    Szabo, Gabor
    Balaban, Umniye
    Bleiziffer, Sabine
    Bauer, Timm
    Ensminger, Stephan
    Frerker, Christian
    Herrmann, Eva
    Beyersdorf, Friedhelm
    Hamm, Christian
    Beckmann, Andreas
    Moellmann, Helge
    Karck, Matthias
    Katus, Hugo A.
    Walther, Thomas
    [J]. EUROPEAN HEART JOURNAL, 2019, 40 (17) : 1323 - 1330
  • [3] A Simple Risk Tool (the OBSERVANT Score) for Prediction of 30-Day Mortality After Transcatheter Aortic Valve Replacement
    Capodanno, Davide
    Barbanti, Marco
    Tamburino, Corrado
    D'Errigo, Paola
    Ranucci, Marco
    Santoro, Gennaro
    Santini, Francesco
    Onorati, Francesco
    Grossi, Claudio
    Covello, Remo Daniel
    Capranzano, Piera
    Rosato, Stefano
    Seccareccia, Fulvia
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2014, 113 (11) : 1851 - 1858
  • [4] STS-ACC TVT Registry of Transcatheter Aortic Valve Replacement
    Carroll, John D.
    Mack, Michael J.
    Vemulapalli, Sreekanth
    Herrmann, Howard C.
    Gleason, Thomas G.
    Hanzel, George
    Deeb, G. Michael
    Thourani, Vinod H.
    Cohen, David J.
    Desai, Nimesh
    Kirtane, Ajay J.
    Fitzgerald, Susan
    Michaels, Joan
    Krohn, Carole
    Masoudi, Frederick A.
    Brindis, Ralph G.
    Bavaria, Joseph E.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 76 (21) : 2492 - 2516
  • [5] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [6] Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study
    Commandeur, Frederic
    Slomka, Piotr J.
    Goeller, Markus
    Chen, Xi
    Cadet, Sebastien
    Razipour, Aryabod
    McElhinney, Priscilla
    Gransar, Heidi
    Cantu, Stephanie
    Miller, Robert J. H.
    Rozanski, Alan
    Achenbach, Stephan
    Tamarappoo, Balaji K.
    Berman, Daniel S.
    Dey, Damini
    [J]. CARDIOVASCULAR RESEARCH, 2020, 116 (14) : 2216 - 2225
  • [7] Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis - First human case description
    Cribier, A
    Eltchaninoff, H
    Bash, A
    Borenstein, N
    Tron, C
    Bauer, F
    Derumeaux, G
    Anselme, F
    Laborde, F
    Leon, MB
    [J]. CIRCULATION, 2002, 106 (24) : 3006 - 3008
  • [8] COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH
    DELONG, ER
    DELONG, DM
    CLARKEPEARSON, DI
    [J]. BIOMETRICS, 1988, 44 (03) : 837 - 845
  • [9] Artificial Intelligence in Cardiovascular Imaging JACC State-of-the-Art Review
    Dey, Damini
    Slomka, Piotr J.
    Leeson, Paul
    Comaniciu, Dorin
    Shrestha, Sirish
    Sengupta, Partho P.
    Marwick, Thomas H.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (11) : 1317 - 1335
  • [10] Development and Validation of a Risk Prediction Model for In-Hospital Mortality After Transcatheter Aortic Valve Replacement
    Edwards, Fred H.
    Cohen, David J.
    O'Brien, Sean M.
    Peterson, Eric D.
    Mack, Michael J.
    Shahian, David M.
    Grover, Frederick L.
    Tuzcu, Murat
    Thourani, Vinod H.
    Carroll, John
    Brennan, J. Matthew
    Brindis, Ralph G.
    Rumsfeld, John
    Holmes, David R., Jr.
    [J]. JAMA CARDIOLOGY, 2016, 1 (01) : 46 - 52