Efficient space-time adaptivity for parabolic evolution equations using wavelets in time and finite elements in space

被引:0
作者
van Venetie, Raymond [1 ]
Westerdiep, Jan [1 ]
机构
[1] Univ Amsterdam, Korteweg De Vries Inst Math, POB 94248, NL-1090 GE Amsterdam, Netherlands
关键词
adaptive approximation; optimal computational complexity; space-time variational formulations of parabolic PDEs; sparse grids; tensor-product approximation; CONVERGENCE; STABILITY;
D O I
10.1002/nla.2457
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considering the space-time adaptive method for parabolic evolution equations we introduced in Stevenson et al., this work discusses an implementation of the method in which every step is of linear complexity. Exploiting the tensor-product structure of the space-time cylinder, the method allows for a family of trial spaces given as spans of wavelets-in-time tensorized with finite element spaces-in-space. On spaces whose bases are indexed by double-trees, we derive an algorithm that applies the resulting bilinear forms in linear complexity. We provide extensive numerical experiments to demonstrate the linear runtime of the resulting adaptive loop.
引用
收藏
页数:21
相关论文
共 27 条
[1]   Stability of sparse space-time finite element discretizations of linear parabolic evolution equations [J].
Andreev, Roman .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (01) :242-260
[2]   The solution of multidimensional real Helmholtz equations on sparse grids [J].
Balder, R ;
Zenger, C .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (03) :631-646
[3]  
Bungartz HJ, 2004, ACT NUMERIC, V13, P147, DOI 10.1017/S0962492904000182
[4]   ON THE SOBOLEV AND LP-STABILITY OF THE L2-PROJECTION [J].
Diening, Lars ;
Storn, Johannes ;
Tscherpel, Tabea .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (05) :2571-2607
[5]   Instance Optimality of the Adaptive Maximum Strategy [J].
Diening, Lars ;
Kreuzer, Christian ;
Stevenson, Rob .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (01) :33-68
[6]   Space-time least-squares finite elements for parabolic equations [J].
Fuhrer, Thomas ;
Karkulik, Michael .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 92 :27-36
[7]   SPACE-TIME ADAPTIVE WAVELET METHODS FOR OPTIMAL CONTROL PROBLEMS CONSTRAINED BY PARABOLIC EVOLUTION EQUATIONS [J].
Gunzburger, Max D. ;
Kunoth, Angela .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (03) :1150-1170
[8]   AN EFFICIENT SPACE-TIME ADAPTIVE WAVELET GALERKIN METHOD FOR TIME-PERIODIC PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS [J].
Kestler, Sebastian ;
Steih, Kristina ;
Urban, Karsten .
MATHEMATICS OF COMPUTATION, 2016, 85 (299) :1309-1333
[9]   Fast evaluation of system matrices w.r.t. multi-tree collections of tensor product refinable basis functions [J].
Kestler, Sebastian ;
Stevenson, Rob .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 260 :103-116
[10]   TIME-PARALLEL ITERATIVE SOLVERS FOR PARABOLIC EVOLUTION EQUATIONS [J].
Neumueller, Martin ;
Smears, Iain .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01) :C28-C51