Numerical Investigation on Thermal Performance of PCM-Based Hybrid Microchannel Heat Sinks for Electronics Cooling Application

被引:3
作者
Ramesh, K. Naga [1 ]
Sharma, T. Karthikeya [1 ]
Rao, G. Amba Prasad [2 ]
Murthy, K. Madhu [2 ]
机构
[1] NIT Andhra Pradesh, Dept Mech Engn, Tadepalligudem, India
[2] NIT Warangal, Dept Mech Engn, Kazipet, India
关键词
Hybrid microchannel heat sink; Electronic cooling; Phase change material (PCM); Thermal management; Liquid fraction; Thermal resistance; Thermal performance; NANOFLUID; FLOW; FLUID;
D O I
10.1007/s13369-022-07007-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Heatsinks have a prime role in the thermal management of energy systems and electronic devices. Miniaturization and the high power requirement of modern electronic equipment make them more compact and more heat-generating. For the efficient operation of modern electronic equipment, efficient thermal management system is required. Microchannel heatsinks (MCHS) are the best choice for efficient thermal management of electronic devices because of their high compactness and large heat-dissipating capacity. The attention of most of the researchers is on the improvement of the performance of the MCHS. In the present work, the augmentation of the performance of MCHS by incorporating the phase change material (PCM) was analysed. Six novel designs of PCM-based hybrid MCHS are modelled using ANSYS FLUENT. The computational model implemented for the present work was validated with both experimental and numerical works in the literature, and a good agreement was observed. The performance of six models of PCM-based MCHSs is analysed and compared with the heatsink without PCM. The heatsink model with the best thermal performance is presented. The variation of thermal resistance, liquid fraction, and temperature uniformity coefficient (TUC) with Reynolds number are analysed. A maximum of 15.26% lower TUC and 7.3% lower thermal resistance was found in hybrid MCHS with PCM compared to the MCHS without PCM. The influence of the liquid fraction and position of the PCM on the performance of MCHS were also studied.
引用
收藏
页码:2779 / 2793
页数:15
相关论文
共 50 条
  • [31] INVESTIGATION OF COOLING PERFORMANCE OF A SWIRL MICROCHANNEL HEAT SINK BY NUMERICAL SIMULATION
    Fan, Yanfeng
    Hassan, Ibrahim
    PROCEEDINGS IF THE ASME 9TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS 2011, VOL 1, 2012, : 463 - 469
  • [32] EXPERIMENTAL INVESTIGATION OF SILICON-BASED OBLIQUE FINNED MICROCHANNEL HEAT SINKS
    Lee, Yong-Jiun
    Lee, Poh-Seng
    Chou, Siaw-Kiang
    PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 6: MICROCHANNELS, NANO, NANOFLUIDS, SPRAY COOLING, POROUS MEDIA, 2010, : 283 - 291
  • [33] Numerical optimization of a PCM-based heat sink with internal fins
    Levin, Peleg P.
    Shitzer, Avraham
    Hetsroni, Gad
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 61 : 638 - 645
  • [34] An experimental study on the performance of PCM-based heat sink with air for thermal regulation of PVs
    Yagci, Oguz Kaan
    Avci, Mete
    Aydin, Orhan
    Markal, Burak
    SOLAR ENERGY, 2024, 278
  • [35] EXPERIMENTAL STUDY OF PCM BASED HYBRID HEAT SINK FOR ELECTRONIC COOLING
    Nandan, R.
    Arumuru, V.
    Rath, P.
    Das, M. K.
    JOURNAL OF ENHANCED HEAT TRANSFER, 2022, 29 (03) : 1 - 15
  • [36] Numerical Model of a Slurry PCM-Based Solar Thermal Collector
    Baronetto, Sara
    Serale, Gianluca
    Goia, Francesco
    Perino, Marco
    PROCEEDINGS OF THE 8TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATION AND AIR CONDITIONING, VOL 3: BUILDING SIMULATION AND INFORMATION MANAGEMENT, 2014, 263 : 13 - 20
  • [37] Parametric analysis of a PCM-based heat sink for electronic device thermal management
    Khadem, Zahra
    Salari, Ali
    Naghdbishi, Ali
    Shakibi, Hamid
    Sardarabadi, Mohammad
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [38] OPTIMIZATION OF THE THERMAL PERFORMANCE OF MULTI-LAYER SILICON MICROCHANNEL HEAT SINKS
    Xu, Shanglong
    Wu, Yihao
    Cai, Qiyu
    Yang, Lili
    Li, Yue
    THERMAL SCIENCE, 2016, 20 (06): : 2001 - 2013
  • [39] Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins
    Hosseinizadeh, S. F.
    Tan, F. L.
    Moosania, S. M.
    APPLIED THERMAL ENGINEERING, 2011, 31 (17-18) : 3827 - 3838
  • [40] Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling
    Tauseef-ur-Rehman
    Ali, Hafiz Muhammad
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2018, 98 : 155 - 162