Adopting molecular tagging velocimetry for high-resolution measurements of oscillating grid turbulence

被引:0
作者
Ramesh, Bhaarath [1 ]
Klewicki, Joseph C. [1 ]
Philip, Jimmy [1 ]
机构
[1] Univ Melbourne, Dept Mech Engn, Melbourne, Vic 3010, Australia
关键词
Compendex;
D O I
10.1007/s00348-024-03787-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Single-component molecular tagging velocimetry (1c-MTV) experiments are conducted in an oscillating grid turbulence facility to systematically clarify the trade-offs between maximizing measurement dynamic range and minimizing measurement uncertainty. The primary aim is to obtain reliable turbulence data with the maximum possible vector resolution (Delta x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta {x}_{1}$$\end{document}). Four optical magnifications (M0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M{_{0}}$$\end{document} =0.11, 0.22, 0.45, 1.11) with four interframe time delay (Delta t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta {t}$$\end{document}) values, for each optical magnification case, ranging from 3 to 10 ms, are investigated. The grid oscillates with a frequency (f) of 3.2 and 4.1 Hz, and a single fixed stroke length (S) of 55 mm. The measurement quality is quantified using three important turbulence descriptors - the second-order transverse velocity correlation function (⟨g(r)⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\langle {g(r)}\rangle )$$\end{document}, the second-order transverse velocity structure function ([Delta gu]2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$([\Delta {_{g}u}]<^>2)$$\end{document}, and the turbulence energy dissipation rate (⟨epsilon⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \epsilon \rangle$$\end{document}). Other descriptors such as the longitudinal integral length scale (l) and the longitudinal Taylor microscale (lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }$$\end{document}) are also used to compare with reference values reported in literature. The degree of agreement with the reference values from literature, and insensitivity of the descriptor estimates to different MTV design parameters are used to determine the most robust means of obtaining high-resolution turbulence data from 1c-MTV. The experimental design parameters are contextualized using the Kolmogorov length (eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta }$$\end{document}), time (tau eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tau _{\eta }}$$\end{document}), and velocity (u eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_{\eta }}$$\end{document}) scales that are based on the most reliable ⟨epsilon⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle {\epsilon }\rangle$$\end{document} estimates from the current experiments. The pixel-displacement corresponding to u eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u_{\eta }}$$\end{document}(Delta x2 eta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\varDelta {x}{_{2}}{_{\eta }}})$$\end{document} describes the interdependencies between M0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{0}}$$\end{document} and Delta t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta {t}$$\end{document}. The data set with M0=0.45\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_{0}}=0.45$$\end{document} (eta=18 Delta x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta =}18{\varDelta {x}_{1}}$$\end{document} for f=3.2 Hz, and eta=13 Delta x1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\eta =}13{\varDelta {x}_{1}}$$\end{document} for f=4.1 Hz) represents the most reliable and the highest resolution case. This conclusion was deduced by taking the performance of all the turbulence descriptors into account. As far as the interframe time delay is concerned, Delta t >=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta {t} \ge$$\end{document} 4 ms (Delta x2 eta >= 0.5pixels\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varDelta {x}{_{2}}{_{\eta }}}\ge 0.5 \text {pixels}$$\end{document}) works well for all M0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{M}_{0}}$$\end{document}. To the authors' knowledge, the present study documents the first instance of a series of 1c-MTV experiments conducted for a systematic clarification of the nature of balancing the available dynamic range and the measurement uncertainty. Additionally, since the study involves turbulent flow with negligible mean-flow, it serves as an adequate representation of 1c-MTV performance in a three-dimensional flow.
引用
收藏
页数:17
相关论文
共 17 条
  • [1] Davidson P.A., 2015, Turbulence: An Introduction for Scientists and Engineers
  • [2] Dissipation rate estimation from PIV in zero-mean isotropic turbulence
    de Jong, J.
    Cao, L.
    Woodward, S. H.
    Salazar, J. P. L. C.
    Collins, L. R.
    Meng, H.
    [J]. EXPERIMENTS IN FLUIDS, 2009, 46 (03) : 499 - 515
  • [3] OSCILLATING GRIDS AS A SOURCE OF NEARLY ISOTROPIC TURBULENCE
    DESILVA, IPD
    FERNANDO, HJS
    [J]. PHYSICS OF FLUIDS, 1994, 6 (07) : 2455 - 2464
  • [4] Efficacy of single-component MTV to measure turbulent wall-flow velocity derivative profiles at high resolution
    Elsnab, John R.
    Monty, Jason P.
    White, Christopher M.
    Koochesfahani, Manoochehr M.
    Klewicki, Joseph C.
    [J]. EXPERIMENTS IN FLUIDS, 2017, 58 (09)
  • [5] A multi-time-delay approach for correction of the inherent error in single-component molecular tagging velocimetry
    Hammer, Patrick
    Pouya, Shahram
    Naguib, Ahmed
    Koochesfahani, Manoochehr
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2013, 24 (10)
  • [6] Hill RB, 1996, EXP FLUIDS, V20, P142, DOI 10.1007/BF00190270
  • [7] SPATIALLY DECAYING TURBULENCE AND ITS RELATION TO MIXING ACROSS DENSITY INTERFACES
    HOPFINGER, EJ
    TOLY, JA
    [J]. JOURNAL OF FLUID MECHANICS, 1976, 78 (NOV5) : 155 - &
  • [8] Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder
    Hu, Hui
    Koochesfahani, Manoochehr M.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (06) : 1269 - 1281
  • [9] Measurement of turbulence near shear-free density interfaces
    Kit, ELG
    Strang, EJ
    Fernando, HJS
    [J]. JOURNAL OF FLUID MECHANICS, 1997, 334 : 293 - 314
  • [10] THE LOCAL-STRUCTURE OF TURBULENCE IN INCOMPRESSIBLE VISCOUS-FLUID FOR VERY LARGE REYNOLDS-NUMBERS
    KOLMOGOROV, AN
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 434 (1890): : 9 - 13