EEG-based motor imagery classification with quantum algorithms

被引:4
|
作者
Olvera, Cynthia [1 ]
Ross, Oscar Montiel [1 ]
Rubio, Yoshio [1 ]
机构
[1] Ctr Invest & Desarrollo Tecnol Digital, Inst Politecn Nacl, 1310 Inst Politecn Nacl, Tijuana 22430, Baja California, Mexico
关键词
Quantum computing; EEG; Deep learning; Evolutionary algorithms; INSPIRED EVOLUTIONARY ALGORITHM; FEATURE-SELECTION; TASKS;
D O I
10.1016/j.eswa.2024.123354
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Developing efficient algorithms harnessing the power of current quantum processors has sparked the emergence of techniques that combine soft computing with quantum computing. This paper proposes two methods that effectively exploit quantum processors for electroencephalography-based motor imagery classification. The first method is a wrapper feature selection approach based on a quantum genetic algorithm, while the second approach employs a hybrid classical-quantum network comprising a baseline feature extraction network and a variational quantum circuit serving as the classifier. Our evaluation on the BCI Competition IV dataset 2b yielded competitive mean accuracies of 83.82%, 85.56%, and 73.73% for the subject -dependent cross -validation, subject -dependent hold -out validation, and subject -independent leaving one subject out classification approaches, respectively. Notably, our statistical analysis revealed that the hybrid models performed on par with the majority of state-of-the-art architectures, underscoring the practical viability of quantum -hybrid methodologies in real -world problem -solving scenarios.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification
    Garcia-Murillo, Daniel Guillermo
    Alvarez-Meza, Andres Marino
    Castellanos-Dominguez, Cesar German
    DIAGNOSTICS, 2023, 13 (06)
  • [22] Incorporating hand-crafted features into deep learning models for motor imagery EEG-based classification
    Paul Bustios
    João Luís Garcia Rosa
    Applied Intelligence, 2023, 53 : 30133 - 30147
  • [23] Incorporating hand-crafted features into deep learning models for motor imagery EEG-based classification
    Bustios, Paul
    Rosa, Joao Luis Garcia
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30133 - 30147
  • [24] Multi-Scale Convolutional Attention and Riemannian Geometry Network for EEG-Based Motor Imagery Classification
    Zhou, Ben
    Wang, Lei
    Xu, Wenchang
    Jiang, Chenyu
    IEEE ACCESS, 2024, 12 : 79731 - 79740
  • [25] Compact convolutional transformer for subject-independent motor imagery EEG-based BCIs
    Keutayeva, Aigerim
    Fakhrutdinov, Nail
    Abibullaev, Berdakh
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [26] NeuroFlex: Feasibility of EEG-Based Motor Imagery Control of a Soft Glove for Hand Rehabilitation
    Zare, Soroush
    Beaber, Sameh I.
    Sun, Ye
    SENSORS, 2025, 25 (03)
  • [27] Towards Enhanced EEG-based Authentication with Motor Imagery Brain-Computer Interface
    Wu, Bingkun
    Meng, Weizhi
    Chiu, Wei-Yang
    PROCEEDINGS OF THE 38TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE, ACSAC 2022, 2022, : 799 - 812
  • [28] SSTMNet: Spectral-Spatio-Temporal and Multiscale Deep Network for EEG-Based Motor Imagery Classification
    Alotaibi, Albandari
    Hussain, Muhammad
    Aboalsamh, Hatim
    MATHEMATICS, 2025, 13 (04)
  • [29] The Effect of tDCS on EEG-Based Functional Connectivity in Gait Motor Imagery
    Gaxiola-Tirado, J. A.
    Rodriguez-Ugarte, M.
    Ianez, E.
    Ortiz, M.
    Gutierrez, D.
    Azorin, J. M.
    UNDERSTANDING THE BRAIN FUNCTION AND EMOTIONS, PT I, 2019, 11486 : 3 - 10
  • [30] A Lasso quantile periodogram based feature extraction for EEG-based motor imagery
    Meziani, Aymen
    Djouani, Karim
    Medkour, Tarek
    Chibani, Abdelghani
    JOURNAL OF NEUROSCIENCE METHODS, 2019, 328