Enhancing the structural stability and cycling performance of LiCoO2 at 4.55 V by YPO4 modification

被引:2
|
作者
Li, Teng [1 ]
Wang, Ruizi [1 ]
Cai, Zikang [1 ]
Liu, Wenzhe [1 ]
Song, Jiwei [1 ]
Wu, Xixi [1 ]
Cao, Chunyan [1 ]
Yuan, Liangjie [1 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
来源
MATERIALS TODAY COMMUNICATIONS | 2024年 / 38卷
关键词
Li-ion batteries; LiCoO2; YPO4; High cut-off voltage; RICH LAYERED CATHODES; LITHIUM-ION BATTERIES; DOPED LICOO2; SURFACE; NI; CAPACITY; ELECTROLYTE; LIMIT; OXIDE; TI;
D O I
10.1016/j.mtcomm.2024.108176
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To date, LiCoO2 has received extensive attention as a cathode material because of its unique characteristics. To satisfy the strong demand for high energy density, the cut-off voltage of LiCoO2 is continuously increased. However, the structural instability of LiCoO2 at a high cut-off voltage leads to capacity decay and many safety issues, which hinder further application of LiCoO2. Herein, YPO4 is used to achieve a better electrochemical performance for LiCoO2 at 4.55 V. In the synthesis process, YPO4 is transformed into the Li3PO4 and Y2O3 phases, which are basically uniformly incorporated into the particle and form a composite with LiCoO2. Owing to the synergistic modification of Li3PO4 and Y2O3 phases, YPO4-modified LiCoO2 materials show enhanced structural stability and excellent cycling performance. Particularly, 1.5% YPO4 modified LiCoO2 not only exhibits a reversible discharge capacity of 171.6 mAh g-1 over 500 cycles with 91.7% capacity retention, but also delivers a capacity of 144.5 mAh g-1 at 5 C (1 C = 274 mAh g-1). This work suggests that using rare-earth metal phosphates can be an effective strategy to improve the cycling performance of LiCoO2 at 4.55 V.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Delayed Phase Transition and Improved Cycling/Thermal Stability by Spinel LiNi0.5Mn1.5O4 Modification for LiCoO2 Cathode at High Voltages
    Pang, Peipei
    Wang, Zheng
    Deng, Yaoming
    Nan, Junmin
    Xing, Zhenyu
    Li, Hong
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (24) : 27339 - 27349
  • [32] A Hybrid Ionic and Electronic Conductive Coating Layer for Enhanced Electrochemical Performance of 4.6 V LiCoO2
    Cheng, Tao
    Cheng, Qin
    He, Yun
    Ge, Menghan
    Feng, Zhijie
    Li, Panpan
    Huang, Yijia
    Zheng, Jieyun
    Lyu, Yingchun
    Guo, Bingkun
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (36) : 42917 - 42926
  • [33] Double function-layers construction strategy promotes the cycling stability of LiCoO2 under high temperature and high voltage
    Li, Mingyang
    Bai, Fangyuan
    Yao, Qi
    Wang, Hecheng
    Li, Peng
    ELECTROCHIMICA ACTA, 2023, 449
  • [34] Electrochemical performance and stability improvement of triclinic LiVOPO4 cathode material via simultaneous Y doping and YPO4 surface modification
    Ahsan, Zishan
    Wang, Shuai
    Cai, Zhenfei
    Ma, Yangzhou
    Jin, Chuangui
    Song, Guangsheng
    Zhang, Shihong
    Yang, Weidong
    Wen, Cuie
    APPLIED SURFACE SCIENCE, 2022, 601
  • [35] Enabling high-performance 4.6 V LiCoO2 in a wide temperature range via a synergetic strategy
    Ren, Jincan
    Tang, Yu
    Li, Weibao
    He, Dong
    Zhu, He
    Wang, Xingyu
    Lan, Si
    Yin, Zijia
    Yang, Tingting
    Bai, Zhaowen
    Ren, Yang
    Xiao, Xiangheng
    Liu, Qi
    ECOMAT, 2023, 5 (06)
  • [36] Enhancing the Electrochemical Performance of a High-Voltage LiCoO2 Cathode with a Bifunctional Electrolyte Additive
    Zhang, Zhi
    Liu, Fangyan
    Huang, Zeyu
    Gu, Jiahao
    Song, Ying
    Zheng, Jingqiang
    Yi, Maoyi
    Mao, Qiuyun
    Bai, Maohui
    Fan, Xinming
    Hong, Bo
    Zhang, Zhian
    Lai, Yanqing
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11): : 12954 - 12964
  • [37] Mitigation of charge heterogeneity by uniform in situ coating enables stable cycling of LiCoO2 at 4.6V
    Li, Yu
    Pan, Hongyi
    Gan, Luyu
    Zan, Mingwei
    Huang, Yuli
    Wang, Bitong
    Deng, Biao
    Wang, Tian
    Yu, Xiqian
    Wang, Bo
    Li, Hong
    Huang, Xuejie
    ENERGY STORAGE MATERIALS, 2024, 67
  • [38] Facile Solid-State Synthesis to In Situ Generate a Composite Coating Layer Composed of Spinel-Structural Compounds and Li3PO4 for Stable Cycling of LiCoO2 at 4.6 V
    Li, Yu
    Zan, Mingwei
    Chen, Penghao
    Huang, Yuli
    Xu, Xilin
    Zhang, Chengzhen
    Cai, Zhuoyuan
    Yu, Xiqian
    Li, Hong
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (44) : 51262 - 51273
  • [39] Improving stability of high voltage LiCoO2 by synergetic surface modification via in situ surface conversion
    Zhang, Shuping
    Wu, Jianyang
    Zhao, Guangyu
    Chen, Jing
    Yang, Huanfang
    Jiang, Xiaorui
    Li, Miao
    Wu, Bin
    Liu, Wen
    Zhou, Henghui
    Zhao, Hailei
    JOURNAL OF POWER SOURCES, 2023, 560
  • [40] Stabilizing 4.6 V LiCoO2 via Surface-to-Bulk Titanium Modification
    Gao, Liu
    Li, Fujie
    Zeng, Guangrong
    Jin, Xin
    Li, Zhenyou
    Wang, Chao
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (09)