Shock-wave tolerant phase reconstruction algorithm for Shack-Hartmann wavefront sensor data

被引:3
作者
DeFoor, Thomas E. [1 ]
Kalensky, Matthew [2 ]
Kemnetz, Matthew R. [3 ]
Bukowski, Timothy J. [2 ]
Spencer, Mark F. [4 ]
机构
[1] Ohio State Univ, Coll Engn, Columbus, OH 43210 USA
[2] US Navy, Integrated Engagement Syst Dept, Surface Warfare Ctr Dahlgren Div, Dahlgren, VA USA
[3] US Air Force, Res Lab, Directed Energy Directorate, Kirtland AFB, NM USA
[4] US Air Force, Inst Technol, Wright Patterson AFB, OH USA
关键词
aero-optics; aero-effects; shock waves; wavefront sensing; Shack-Hartmann wavefront sensor; phase discontinuities;
D O I
10.1117/1.OE.62.12.123103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We develop a phase reconstruction algorithm for the Shack-Hartmann wavefront sensor (SHWFS) that is tolerant to phase discontinuities, such as the ones imposed by shock waves. In practice, this algorithm identifies SHWFS locations where the resultant tilt information is affected by the shock and improves the tilt information in these locations using the local SHWFS observation-plane irradiance patterns. The algorithm was shown to work well over the range of conditions tested with both simulated and experimental data. In turn, the reconstruction algorithm will enable robust wavefront sensing in transonic, supersonic, and hypersonic environments.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A new illumination source for Shack-Hartmann wavefront sensor
    Qi Yuejing
    Lu Zengxiong
    Ding Gongming
    Su Jiani
    7TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: OPTICAL TEST AND MEASUREMENT TECHNOLOGY AND EQUIPMENT, 2014, 9282
  • [22] Development of Wavefront Sensor using Shack-Hartmann Principle
    Atas, Marie Cattleah D.
    Landicho, Larish Mariam T.
    Lobo, Abigail D.
    Orubia, Carla Joy L.
    Silverio, Adolph Christian O.
    Aquino, Aaron U.
    Amado, Timothy M.
    Puno, John Carlo, V
    Quijano, Jay Fel C.
    Arago, Nilo M.
    2019 IEEE 11TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2019,
  • [23] Effects of the LGS geometry on the Shack-Hartmann wavefront sensor and the Pyramid wavefront sensor
    Oyarzun, F.
    Heritier, C. T.
    Chambouleyron, V
    Fusco, T.
    Rouquette, P.
    Neichel, B.
    ADAPTIVE OPTICS SYSTEMS IX, 2024, 13097
  • [24] Transverse wind Measurement with Shack-Hartmann Wavefront Sensor
    Li, Zhenghan
    Li, Xinyang
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 2745 - 2751
  • [25] Measurement of wavefront aberrations of human eyes with Shack-Hartmann wavefront sensor
    Cheng S.-Y.
    Cao Z.-L.
    Hu L.-F.
    Mu Q.-Q.
    Li P.-F.
    Xuan L.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2010, 18 (05): : 1060 - 1067
  • [26] Shack-Hartmann wavefront sensor for the determination of local inhomogeneities of the surface
    Goloborodko, Andrey A.
    Kurashov, Vitalij N.
    Podanchuk, Dmytro V.
    Sutyagina, Natalia S.
    8TH INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 2008, 7008
  • [27] Hough transform used on the spot-centroiding algorithm for the Shack-Hartmann wavefront sensor
    Chia, Chou-Min
    Huang, Kuang-Yuh
    Chang, Elmer
    OPTICAL ENGINEERING, 2016, 55 (01)
  • [28] Scanning Shack-Hartmann sensor for wavefront measurements on freeform optics
    Fuerst, Martin
    Berlakovich, Nikolaus
    Csencsics, Ernst
    Schitter, Georg
    OPTICAL MANUFACTURING AND TESTING XIV, 2022, 12221
  • [29] A noise error estimation method for Shack-Hartmann wavefront sensor
    Mao, Hongjun
    Liang, Yonghui
    Liu, Jin
    Huang, Zongfu
    AOPC 2015: TELESCOPE AND SPACE OPTICAL INSTRUMENTATION, 2015, 9678
  • [30] Wavefront reconstruction based on the results of light-field conversion by a Shack-Hartmann sensor
    Lavrinov V.V.
    Lavrinova L.N.
    Tuev M.V.
    Lavrinov, V. V. (lnl@iao.ru), 1600, Allerton Press Incorporation (49): : 305 - 312