THE CYCLE-COMPLETE GRAPH RAMSEY NUMBERS R(Cn, K8), FOR 10 ≤ n ≤ 15

被引:1
作者
Baniabedalruhman, A. [1 ]
机构
[1] Yarmouk Univ, Dept Math, Irbid, Jordan
来源
JORDAN JOURNAL OF MATHEMATICS AND STATISTICS | 2023年 / 16卷 / 04期
关键词
Ramsey number; cycle graph; complete graph;
D O I
10.47013/16.4.6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two graphs H-1 and H-2, the Ramsey number R(H-1, H-2) is the smallest natural number n such that each graph of order n contains a copy of H-1 or its complement contains a copy of H-2. In this paper, we find the exact Ramsey number R(C-n, K-8) for 10 <= n <= 15, where C-n is the cycle on n vertices and K8 is the complete graph of order 8.
引用
收藏
页码:703 / 718
页数:16
相关论文
共 13 条
[1]  
Baniabedalruhman A., 2006, M.Sc. Thesis
[2]  
Baniabedalruhman A., 2010, Journal of Combinatorics, Information System Sciences, V35, P293
[3]  
Bataineh M. S. A., 2011, The Cycle-Complete Graph Ramsey Number r(C9, K8)
[4]  
Bollobas B., 2000, AUSTRALAS J COMB, V22, P63
[5]  
BONDY JA, 1973, J COMB THEORY B, V14, P46, DOI DOI 10.1016/J.JCTB.2008.12.002
[6]   The Ramsey numbers R(Cm, K7) and R(C7, K8) [J].
Chen, Yaojun ;
Cheng, T. C. Edwin ;
Zhang, Yunqing .
EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) :1337-1352
[7]  
Erdos P., 1978, Journal of Graph Theory, V2, P53
[8]  
Faudree R. J., 1974, Discrete Mathematics, V8, P313, DOI 10.1016/0012-365X(74)90151-4
[9]  
Jaradat M. M. M., 2007, SUT Journal of Mathematics, V43, P85
[10]   On a problem of formal logic [J].
Ramsey, FP .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1930, 30 :264-286