CRAMÉR-TYPE MODERATE DEVIATIONS UNDER LOCAL DEPENDENCE

被引:2
|
作者
Liu, Song-hao [1 ]
Zhang, Zhuo-song [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen, Peoples R China
关键词
Stein's method; Cramer-type moderate deviation; local dependence; combinatorial central limit theorem; Stein identity; NORMAL APPROXIMATION; LIMIT-THEOREMS; CRAMER; SUMS; MARTINGALES; REMAINDER; BOUNDS; RATES;
D O I
10.1214/23-AAP1931
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish Cramer-type moderate deviation theorems for the sums of locally dependent random variables and combinatorial central limit theorems. Optimal error bounds and convergence ranges are obtained under some mild exponential moment conditions. Our main results are more general or sharper than the results in the literature. The main results follow from a more gen-eral Cramer-type moderate deviation theorem for dependent random variables without any boundedness assumptions, which is of independent interest. The proofs couple Stein's method with a recursive argument.
引用
收藏
页码:4747 / 4797
页数:51
相关论文
共 29 条
  • [1] Normalized and self-normalized Cramér-type moderate deviations for the Euler-Maruyama scheme for the SDE
    Fan, Xiequan
    Hu, Haijuan
    Xu, Lihu
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (08) : 1865 - 1880
  • [2] Self-normalized Cramér type moderate deviations for martingales and applications
    Fan, Xiequan
    Shao, Qi-man
    BERNOULLI, 2025, 31 (01) : 130 - 161
  • [3] Cramér's moderate deviations for martingales with applications
    Fan, Xiequan
    Shao, Qi-Man
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 2046 - 2074
  • [4] Cramér Moderate Deviations for a Supercritical Galton-Watson Process with Immigration
    Wang, Juan
    Peng, Chao
    AXIOMS, 2024, 13 (04)
  • [5] SELF-NORMALIZED CRAMER-TYPE MODERATE DEVIATIONS UNDER DEPENDENCE
    Chen, Xiaohong
    Shao, Qi-Man
    Wu, Wei Biao
    Xu, Lihu
    ANNALS OF STATISTICS, 2016, 44 (04) : 1593 - 1617
  • [6] CRAMER TYPE MODERATE DEVIATIONS FOR RANDOM FIELDS
    Beknazaryan, Aleksandr
    Sang, Hailin
    Xiao, Yimin
    JOURNAL OF APPLIED PROBABILITY, 2019, 56 (01) : 223 - 245
  • [7] Cramér type moderate deviation for random walks conditioned to stay positive
    Sun, Mingyang
    STATISTICS & PROBABILITY LETTERS, 2025, 216
  • [8] A refined Cramer-type moderate deviation for sums of local statistics
    Fang, Xiao
    Luo, Li
    Shao, Qi-Man
    BERNOULLI, 2020, 26 (03) : 2319 - 2352
  • [9] FURTHER REFINEMENT OF SELF-NORMALIZED CRAMER-TYPE MODERATE DEVIATIONS
    Sang, Hailin
    Ge, Lin
    ESAIM-PROBABILITY AND STATISTICS, 2017, 21 : 201 - 219
  • [10] Self-normalized Cramer type moderate deviations for stationary sequences and applications
    Fan, Xiequan
    Grama, Ion
    Liu, Quansheng
    Shao, Qi-Man
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (08) : 5124 - 5148