How Can Radiomics Help the Clinical Management of Patients with Acute Ischemic Stroke?

被引:1
作者
Porto-Alvarez, Jacobo [1 ]
Martinez, Antonio Mosqueira [1 ]
Martinez Fernandez, Javier [1 ]
Lopez, Marta Sanmartin [1 ]
Ulla, Miguel Blanco [1 ]
Vazquez Herrero, Fernando [1 ]
Pumar, Jose Manuel [1 ]
Rodriguez-Yanez, Manuel [2 ]
Pereiro, Anxo Manuel Minguillon [2 ]
Villaverde, Alberto Bolon [3 ]
Rey, Ramon Iglesias [4 ]
Souto-Bayarri, Miguel [1 ]
机构
[1] Complexo Hosp Univ Santiago De Compostela, Radiol Dept, Santiago De Compostela 15706, Spain
[2] Complexo Hosp Univ Santiago De Compostela, Neurol Dept, Santiago De Compostela 15706, Spain
[3] Complexo Hosp Univ Santiago De Compostela, Anaesthesia Dept, Santiago De Compostela 15706, Spain
[4] Hlth Res Inst Santiago De Compostela IDIS, Neuroimaging & Biotechnol Lab NOBEL, Clin Neurosci Res Lab LINC, Santiago De Compostela 15706, Spain
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 18期
关键词
acute ischemic stroke; AIS; radiomics; artificial intelligence; AI; neuroradiology; neurology; OUTCOMES; IMAGES; MODEL;
D O I
10.3390/app131810061
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Acute ischemic stroke (AIS) is the loss of neurological function due to a sudden reduction in cerebral blood flow and is a leading cause of disability and death worldwide. The field of radiological imaging has experienced growth in recent years, which could be boosted by the advent of artificial intelligence. One of the latest innovations in artificial intelligence is radiomics, which is based on the fact that a large amount of quantitative data can be extracted from radiological images, from which patterns can be identified and associated with specific pathologies. Since its inception, radiomics has been particularly associated with the field of oncology and has shown promising results in a wide range of clinical situations. The performance of radiomics in non-tumour pathologies has been increasingly explored in recent years, and the results continue to be promising. The aim of this review is to explore the potential applications of radiomics in AIS patients and to theorize how radiomics may change the paradigm for these patients in the coming years.
引用
收藏
页数:16
相关论文
共 66 条
  • [1] CT Angiography-Based Radiomics for Classification of Intracranial Aneurysm Rupture
    Alwalid, Osamah
    Long, Xi
    Xie, Mingfei
    Yang, Jiehua
    Cen, Chunyuan
    Liu, Huan
    Han, Ping
    [J]. FRONTIERS IN NEUROLOGY, 2021, 12
  • [2] Radiomics/Radiogenomics in Lung Cancer: Basic Principles and Initial Clinical Results
    Anagnostopoulos, Athanasios K.
    Gaitanis, Anastasios
    Gkiozos, Ioannis
    Athanasiadis, Emmanouil, I
    Chatziioannou, Sofia N.
    Syrigos, Konstantinos N.
    Thanos, Dimitris
    Chatziioannou, Achilles N.
    Papanikolaou, Nikolaos
    [J]. CANCERS, 2022, 14 (07)
  • [3] CT angiographic radiomics signature for risk stratification in anterior large vessel occlusion stroke
    Avery, Emily W.
    Behland, Jonas
    Mak, Adrian
    Haider, Stefan P.
    Zeevi, Tal
    Sanelli, Pina C.
    Filippi, Christopher G.
    Malhotra, Ajay
    Matouk, Charles C.
    Griessenauer, Christoph J.
    Zand, Ramin
    Hendrix, Philipp
    Abedi, Vida
    Falcone, Guido J.
    Petersen, Nils
    Sansing, Lauren H.
    Sheth, Kevin N.
    Payabvash, Seyedmehdi
    [J]. NEUROIMAGE-CLINICAL, 2022, 34
  • [4] Endovascular Therapy after Intravenous t-PA versus t-PA Alone for Stroke
    Broderick, Joseph P.
    Palesch, Yuko Y.
    Demchuk, Andrew M.
    Yeatts, Sharon D.
    Khatri, Pooja
    Hill, Michael D.
    Jauch, Edward C.
    Jovin, Tudor G.
    Yan, Bernard
    Silver, Frank L.
    von Kummer, Ruediger
    Molina, Carlos A.
    Demaerschalk, Bart M.
    Budzik, Ronald
    Clark, Wayne M.
    Zaidat, Osama O.
    Malisch, Tim W.
    Goyal, Mayank
    Schonewille, Wouter J.
    Mazighi, Mikael
    Engelter, Stefan T.
    Anderson, Craig
    Spilker, Judith
    Carrozzella, Janice
    Ryckborst, Karla J.
    Janis, L. Scott
    Martin, Renee H.
    Foster, Lydia D.
    Tomsick, Thomas A.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2013, 368 (10) : 893 - 903
  • [5] Advances in Auto-Segmentation
    Cardenas, Carlos E.
    Yang, Jinzhong
    Anderson, Brian M.
    Court, Laurence E.
    Brock, Kristy B.
    [J]. SEMINARS IN RADIATION ONCOLOGY, 2019, 29 (03) : 185 - 197
  • [6] Radiomics in Stroke Neuroimaging: Techniques, Applications, and Challenges
    Chen, Qian
    Xia, Tianyi
    Zhang, Mingyue
    Xia, Nengzhi
    Liu, Jinjin
    Yang, Yunjun
    [J]. AGING AND DISEASE, 2021, 12 (01): : 143 - 154
  • [7] CT-based radiomics for differentiating intracranial contrast extravasation from intraparenchymal haemorrhage after mechanical thrombectomy
    Chen, Xiaojun
    Li, Yuanzhe
    Zhou, Yongjin
    Yang, Yan
    Yang, Jiansheng
    Pang, Peipei
    Wang, Yi
    Cheng, Jianmin
    Chen, Haibo
    Guo, Yifan
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (07) : 4771 - 4779
  • [8] Ischemic stroke subtyping method combining convolutional neural network and radiomics
    Chen, Yang
    He, Yiwen
    Jiang, Zhuoyun
    Xie, Yuanzhong
    Nie, Shengdong
    [J]. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2023, 31 (02) : 223 - 235
  • [9] Computed Tomography Angiography- Based Thrombus Radiomics for Predicting the Time Since Stroke Onset
    Cheng, Yue
    Wan, Sunli
    Wu, Wenjuan
    Chen, Fangming
    Jiang, Jingxuan
    Cai, Dongmei
    Bao, Zhongyuan
    Li, Yuehua
    Zhang, Lei
    [J]. ACADEMIC RADIOLOGY, 2023, 30 (11) : 2469 - 2476
  • [10] Cui H, 2018, IEEE ENG MED BIO, P722, DOI 10.1109/EMBC.2018.8512291