Aerodynamic Enhancement of Vertical-Axis Wind Turbines Using Plain and Serrated Gurney Flaps

被引:2
|
作者
Chen, Liu [1 ]
Yang, Pei [1 ]
Zhang, Bingxia [1 ]
Chen, Lingjie [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Energy & Power Engn, Shanghai 200093, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 23期
基金
中国国家自然科学基金;
关键词
serrated gurney flap; vertical-axis wind turbine; aerodynamic performance; CFD SIMULATION; AIRFOIL; PERFORMANCE; REDUCTION; DESIGN;
D O I
10.3390/app132312643
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In light of the escalating demand for renewable energy sources, vertical-axis wind turbines have emerged as a pivotal technical solution for addressing the challenge of clean energy supply in residential and urban areas. As a simple and feasible passive control method, the plain Gurney flap (PGF) is widely applied to improve turbine aerodynamic performance. In this paper, the influence of a novel serrated gurney flap (SGF) with different flap heights is studied on the NACA0021 airfoil by numerical simulations. The findings demonstrate that, compared with the PGF, the SGF reduces the trailing edge reverse vortices from a pair to a single vortex and possesses lower drag. When the flap height reaches 6% of the chord (6%c), the lift-to-drag ratio of SGF surpasses that of PGF. A turbine rotor is equipped with an SGF and a PGF to compare their performances. The result confirms the flap effect depending on the rotor's tip speed. At a low tip speed ratio (TSR), the PGF works better than the SGF. The SGF is preferred over the PGF for a higher tip speed ratio (TSR > 2.5). With the 6%c flap height, the performance of the SGF rotor surpasses the PGF by 13.9% at TSR = 2.62.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Aerodynamic Performance of Vertical-Axis Wind Turbines
    Redchyts, Dmytro
    Portal-Porras, Koldo
    Tarasov, Serhii
    Moiseienko, Svitlana
    Tuchyna, Uliana
    Starun, Natalya
    Fernandez-Gamiz, Unai
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (07)
  • [2] Power performance enhancement of vertical axis wind turbines by a novel gurney flap design
    Mousavi, Milad
    Masdari, Mehran
    Tahani, Mojtaba
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2022, 94 (04) : 482 - 491
  • [3] Optimisation of the Aerodynamic Characteristics of H-Darrieus Vertical-axis Wind Turbines
    Pavlenko, Anatoliy
    Koshlak, Hanna
    Basok, Borys
    Novikov, Volodymyr
    ROCZNIK OCHRONA SRODOWISKA, 2023, 25 : 25 - 36
  • [4] On the use of Gurney Flaps for the aerodynamic performance augmentation it of Darrieus wind turbines
    Bianchini, Alessandro
    Balduzzi, Francessco
    Di Rosa, Daniele
    Ferrara, Giovanni
    ENERGY CONVERSION AND MANAGEMENT, 2019, 184 (402-415) : 402 - 415
  • [5] Impacts of Gurney flap and solidity on the aerodynamic performance of vertical axis wind turbines in array configurations
    Ni, Lulu
    Miao, Weipao
    Li, Chun
    Liu, Qingsong
    ENERGY, 2021, 215
  • [6] Effect of blade geometry on the aerodynamic loads produced by vertical-axis wind turbines
    Scheurich, F.
    Fletcher, T. M.
    Brown, R. E.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2011, 225 (A3) : 327 - 341
  • [7] Aerodynamic performance and wake development of NACA 0018 airfoil with serrated gurney flaps
    Zheng, Zhehui
    Chen, Liu
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [8] Impact of Aerodynamic Modeling Assumptions on Flutter Speeds of Vertical-Axis Wind Turbines
    Ahsan, Faraz
    Griffith, D. Todd
    AIAA JOURNAL, 2023, 61 (12) : 5377 - 5389
  • [9] Experimental validation of the power enhancement of a pair of vertical-axis wind turbines
    Vergaerde, Antoine
    De Troyer, Tim
    Standaert, Lieven
    Kluczewska-Bordier, Joanna
    Pitance, Denis
    Immas, Alexandre
    Silvert, Frederic
    Runacres, Mark C.
    RENEWABLE ENERGY, 2020, 146 (146) : 181 - 187
  • [10] Aerodynamic performance enhancement of a vertical-axis wind turbine by a biomimetic flap
    Ahnn, Sangwoo
    Kim, Hyeongmin
    Choi, Haecheon
    BIOINSPIRATION & BIOMIMETICS, 2025, 20 (01)