Microstructure, Mechanical Property, and Wear Behavior of NiAl-Based High-Entropy Alloy

被引:7
|
作者
Li, Ziyan [1 ]
Wang, Xiaohong [1 ]
Huang, Yanyan [1 ]
Xu, Zhixin [1 ]
Deng, Yulei [1 ]
Jiang, Xiaoying [1 ]
Yang, Xiaohong [2 ,3 ]
机构
[1] Quzhou Univ, Key Lab Air driven Equipment Technol Zhejiang Prov, Quzhou 324000, Peoples R China
[2] Jinhua Polytech, Academician Expert Workstat, Jinhua 321017, Peoples R China
[3] Key Lab Crop Harvesting Equipment Technol Zhejiang, Jinhua 321017, Peoples R China
基金
中国国家自然科学基金;
关键词
NiAl-based high-entropy alloys; spinodal decomposition; mechanical property; wear; COMPRESSIVE PROPERTIES; TENSILE PROPERTIES; EVOLUTION; PRECIPITATION;
D O I
10.3390/coatings13101737
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on the excellent comprehensive mechanical properties of high-entropy alloy (HEA), the NiAl-based HEA was designed to achieve excellent high-temperature strength, toughness, and wear resistance. In this work, vacuum arc melting technology was used to prepare (NiA1)78(CoCrFe)16.5Cu5.5 HEA, and its microstructure, phase composition, and mechanical properties were systematically studied. The results showed that (NiA1)78(CoCrFe)16.5Cu5.5 HEA was composed of FCC and BCC/B2, with a spinodal decomposition structure in the matrix, and nano-precipitation in the interdendritic, exhibiting a good high-temperature performance. At 600 degrees C, the compressive fracture strength is 842.5 MPa and the fracture strain is 24.5%. When the temperature reaches 800 degrees C, even if the strain reaches 50%, the alloy will not fracture, and the stress-strain curve shows typical work hardening and softening characteristics. The wear coefficient of the alloy first increases and then decreases with the increase in temperature in the range of room temperature to 400 degrees C. However, the specific wear rate shows the opposite trend. At 100 degrees C, the wear rate reaches the lowest of 7.05 x 10-5 mm3/Nm, and the wear mechanism is mainly abrasive wear.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Microstructure Recrystallization and Mechanical Properties of a Cold-Rolled TiNbZrTaHf Refractory High-Entropy Alloy
    Rong, Chuan
    Yang, Jieren
    Zhao, Xiaoliang
    Huang, Ke
    Liu, Ying
    Wang, Xiaohong
    Zhu, Dongdong
    Chen, Ruirun
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2024, 37 (04) : 633 - 647
  • [42] Microstructure and mechanical properties of FeCoCrNiMn high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering
    Cheng, Hu
    Xie, Yan-chong
    Tang, Qun-hua
    Rao, Cong
    Dai, Pin-qiang
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2018, 28 (07) : 1360 - 1367
  • [43] The effect of cooling rate on the microstructure and mechanical properties of NiCoFeCrGa high-entropy alloy
    Molnar, David
    Vida, Adam
    Huang, Shuo
    Chinh, Nguyen Q.
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (06) : 5074 - 5082
  • [44] Microstructure and mechanical properties of TaNbTiZr refractory high-entropy alloy fabricated by EBM
    Xie Z.
    Fu A.
    Wang J.
    Wang X.
    Cao Y.
    Liu B.
    Liu Y.
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2024, 34 (04): : 1179 - 1189
  • [45] Influence of Cold Rolling on the Microstructure and Mechanical Properties of FeCoCrNiMn High-Entropy Alloy
    Sarmadi, Mohamad Ahl
    Atapour, Masoud
    Alizadeh, Mehdi
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2024, 13 (02) : 220 - 230
  • [46] Effect of B Content on Microstructure and Mechanical Properties of FeCrCoNiMn High-Entropy Alloy
    Hou Lili
    Liang Xiaoyu
    Yao Yuhong
    Chen Jian
    Liu Jiangnan
    RARE METAL MATERIALS AND ENGINEERING, 2018, 47 (10) : 3203 - 3207
  • [47] Effect of heat treatment on microstructure and mechanical properties of lightweight high-entropy alloy
    Wang, Weiqi
    Qu, Lidan
    Lu, Yunzhuo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
  • [48] Directionally solidified NiCoCrFeAlW eutectic high-entropy alloy: Microstructure and mechanical properties
    Bai, Xiaotian
    Feng, Xiaoning
    Peng, Peng
    Xu, Yuanli
    Zhang, Xudong
    Kou, Xinli
    Ma, Zhikun
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 4821 - 4830
  • [49] Analysis of Microstructure and Sliding Wear Behavior of Co1.5CrFeNi1.5Ti0.5 High-Entropy Alloy
    Lentzaris, K.
    Poulia, A.
    Georgatis, E.
    Lekatou, A. G.
    Karantzalis, A. E.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2018, 27 (10) : 5177 - 5186
  • [50] Mechanical behavior of high-entropy alloys
    Li, Weidong
    Xie, Di
    Li, Dongyue
    Zhang, Yong
    Gao, Yanfei
    Liaw, Peter K.
    PROGRESS IN MATERIALS SCIENCE, 2021, 118