Hypergraph Learning-Based Semi-Supervised Multi-View Spectral Clustering

被引:1
|
作者
Yang, Geng [1 ]
Li, Qin [1 ]
Yun, Yu [1 ,2 ]
Lei, Yu [1 ,2 ]
You, Jane [3 ]
机构
[1] Shenzhen Inst Informat Technol, Sch Software Engn, Shenzhen 518172, Peoples R China
[2] Xidian Univ, Sch Telecommun Engn, Xian 710071, Peoples R China
[3] Hong Kong Polytech Univ, Dept Comp, Hong Kong 100872, Peoples R China
关键词
semi-supervised learning; multi-view clustering; hypergraph learning; LOW-RANK;
D O I
10.3390/electronics12194083
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph-based semi-supervised multi-view clustering has demonstrated promising performance and gained significant attention due to its capability to handle sample spaces with arbitrary shapes. Nevertheless, the ordinary graph employed by most existing semi-supervised multi-view clustering methods only captures the pairwise relationships between samples, and cannot fully explore the higher-order information and complex structure among multiple sample points. Additionally, most existing methods do not make full use of the complementary information and spatial structure contained in multi-view data, which is crucial to clustering results. We propose a novel hypergraph learning-based semi-supervised multi-view spectral clustering approach to overcome these limitations. Specifically, the proposed method fully considers the relationship between multiple sample points and utilizes hypergraph-induced hyper-Laplacian matrices to preserve the high-order geometrical structure in data. Based on the principle of complementarity and consistency between views, this method simultaneously learns indicator matrices of all views and harnesses the tensor Schatten p-norm to extract both complementary information and low-rank spatial structure within these views. Furthermore, we introduce an auto-weighted strategy to address the discrepancy between singular values, enhancing the robustness and stability of the algorithm. Detailed experimental results on various datasets demonstrate that our approach surpasses existing state-of-the-art semi-supervised multi-view clustering methods.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] SCHG: Spectral Clustering-guided Hypergraph Neural Networks for Multi-view Semi-supervised Learning
    Wu, Yuze
    Lan, Shiyang
    Cai, Zhiling
    Fu, Mingjian
    Li, Jinbo
    Wang, Shiping
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 277
  • [2] Active Semi-Supervised Clustering based on Multi-View Learning
    Zhang, Xue
    Zhao, Dong-yan
    Wei, Shan
    Xiao, Wang-xin
    PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL III, 2009, : 495 - +
  • [3] Semi-Supervised Structured Subspace Learning for Multi-View Clustering
    Qin, Yalan
    Wu, Hanzhou
    Zhang, Xinpeng
    Feng, Guorui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1 - 14
  • [4] Semi-Supervised Learning and Feature Fusion for Multi-view Data Clustering
    Salman, Hadi
    Zhan, Justin
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 645 - 650
  • [5] View Construction for Multi-view Semi-supervised Learning
    Sun, Shiliang
    Jin, Feng
    Tu, Wenting
    ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I, 2011, 6675 : 595 - 601
  • [6] MEGA: Multi-View Semi-Supervised Clustering of Hypergraphs
    Whang, Joyce Jiyoung
    Du, Rundong
    Jung, Sangwon
    Lee, Geon
    Drake, Barry
    Liu, Qingqing
    Kang, Seonggoo
    Park, Haesun
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (05): : 698 - 711
  • [7] Multi-View Semi-Supervised Learning Based Image Annotation
    Sun, Chengjian
    Zhu, Songhao
    Shi, Zhe
    MODERN TECHNOLOGIES IN MATERIALS, MECHANICS AND INTELLIGENT SYSTEMS, 2014, 1049 : 1486 - 1489
  • [8] Semi-Supervised Multi-View Clustering based on NMF with Fusion Regularization
    Cui, Guosheng
    Wang, Ruxin
    Wu, Dan
    Li, Ye
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (06)
  • [9] Auto-weighted Multi-view learning for Semi-Supervised graph clustering
    Liu, Songhua
    Ding, Caiying
    Jiang, Fei
    Wang, Yan
    Yin, Baoyong
    NEUROCOMPUTING, 2019, 362 : 19 - 32
  • [10] Constrained Tensor Representation Learning for Multi-View Semi-Supervised Subspace Clustering
    Tang, Yongqiang
    Xie, Yuan
    Zhang, Chenyang
    Zhang, Wensheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 3920 - 3933