Hydrothermal Growth Zinc Oxide Nanorods for pH Sensor Application

被引:0
|
作者
Foo, K. L. [1 ]
Tan, S. J. [2 ,3 ]
Heah, C. Y. [2 ,3 ]
Gopinath, Subash C. B. [1 ,4 ]
Liew, Y. M. [2 ,4 ]
Hashim, U. [1 ]
Voon, C. H. [1 ]
机构
[1] Univ Malaysia Perlis, Inst Nano Elect Engn INEE, Kangar 01000, Perlis, Malaysia
[2] Univ Malaysia Perlis, Ctr Excellence CEGeoGTech, Geopolymer & Green Technol, Perlis 01000, Malaysia
[3] Univ Malaysia Perlis, Fac Mech Engn Technol, Perlis 01000, Malaysia
[4] Univ Malaysia Perlis, Fac Chem Engn Technol, Perlis 01000, Malaysia
关键词
Zinc Oxide Nanorods; hydrothermal growth; pH sensor; Interdigitated Electrodes; ZNO THIN-FILMS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The aim of this work is to apply synthesized zinc oxide (ZnO) Nanorods using hydrothermal (HTL) growth technique for pH sensor application. The highly crystallite of ZnO Nanorods was obtained by anneal the growth ZnO Nanorods in furnace at 200 degrees C for 2 hours. Besides that, XRD analysis shows the produced ZnO Nanorods belonged to the (002) plane. Furthermore, Scanning Electron Microscope (SEM) images confirm that the ZnO Nanorods with hexagonal-faceted structural were successfully produced by HTL growth technique. In addition, Ultraviolet-visible (UV-Vis) spectrophotometer analysis shows that the synthesized ZnO belongs to the wide band gap semiconductor material. The growing ZnO Nanorods were then subjected to electrical measurement with various pH levels. The outcome demonstrates that the current rises as the solution changes from acidic to alkaline. Overall, our study shows a relationship between the electrical as well as the structural characteristics of ZnO Nanorods at various pH levels.
引用
收藏
页码:843 / 852
页数:10
相关论文
共 50 条
  • [1] Hydrothermal Growth of Zinc Oxide (ZnO) Nanorods (NRs) on Screen Printed IDEs for pH Measurement Application
    Kumar, Akshaya
    Kumar, Naveen S. K.
    Aniley, Almaw Ayele
    Fernandez, Renny Edwin
    Bhansali, Shekhar
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (09) : B3264 - B3270
  • [2] pH-dependent growth of zinc oxide nanorods
    Baruah, Sunandan
    Dutta, Joydeep
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (08) : 2549 - 2554
  • [3] Controlled growth of zinc oxide nanorods synthesised by the hydrothermal method
    Mbuyisa, P. N.
    Ndwandwe, O. M.
    Cepek, C.
    THIN SOLID FILMS, 2015, 578 : 7 - 10
  • [4] Development of Resistance-Based pH Sensor Using Zinc Oxide Nanorods
    Copa, Vernalyn C.
    Tuico, Anthony R.
    Mendoza, Jamie P.
    Ferrolino, John Paul R.
    Vergara, Christopher Jude T.
    Salvador, Arnel A.
    Estacio, Elmer S.
    Somintac, Armando S.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (06) : 6102 - 6106
  • [5] A Model for the Hydrothermal Growth of Zinc Oxide Nanorods in a High Solution Concentration Regime
    Ahson, R.
    Ahmad, R.
    Mubarik, F. E.
    Flewitt, A. J.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2019, 14 (10) : 1451 - 1460
  • [6] Development of Gas Sensor and Optical Properties of Zinc Oxide Nanorods by Simple Hydrothermal Approach
    Narayanan, Guru Nisha
    Annamalai, Karthigeyan
    MATERIALS TODAY-PROCEEDINGS, 2017, 4 (11) : 12070 - 12074
  • [7] Preparation and Sensor Application of Carbon Coated Zinc Oxide Nanorods Array
    Chung, Ren-Jei
    Wang, Huey-Yuan
    Li, Yu-Ching
    Yeh, Ping-Hung
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2013, 49 (02): : 81 - 88
  • [8] Emerging material zinc magnesium oxide based nanorods: Growth process optimization and sensor application detection
    Murkute, Punam
    Ghadi, Hemant
    Patil, Sheetal
    Rawool, Harshal
    Pandey, Sushilkumar
    Chakrabarti, Subhananda
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 256 : 204 - 216
  • [9] Growth of Different Zinc Oxide Nanostructures under Hydrothermal pH Values
    Abbas, Saja A. H.
    Hassan, Ehssan S.
    Abdulmunem, Oday M.
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (07) : 2433 - 2439
  • [10] Effect of pH on the growth of zinc oxide nanorods using Citrus aurantifolia extracts
    Rafaie, H. A.
    Samat, N. A.
    Nor, R. Md.
    MATERIALS LETTERS, 2014, 137 : 297 - 299