Photoactivatable base editors for spatiotemporally controlled genome editing in vivo

被引:3
|
作者
Zou, Quan [2 ]
Lu, Yi [1 ]
Qing, Bo [3 ]
Li, Na [3 ]
Zhou, Ting [1 ]
Pan, Jinbin [4 ]
Zhang, Xuejun [1 ]
Zhang, Xuening [2 ]
Chen, Yupeng [3 ,5 ]
Sun, Shao-Kai [1 ]
机构
[1] Tianjin Med Univ, Sch Med Imaging, Tianjin 300203, Peoples R China
[2] Tianjin Med Univ, Hosp 2, Dept Radiol, Tianjin 300211, Peoples R China
[3] Tianjin Med Univ, Prov & Minist Cosponsored Collaborat Innovat Ctr M, Dept Biochem & Mol Biol, Key Lab Immune Microenvironm & Dis,Minist Educ,Sch, Tianjin 300070, Peoples R China
[4] Tianjin Med Univ, Gen Hosp, Dept Radiol, Tianjin Key Lab Funct Imaging, Tianjin 300052, Peoples R China
[5] Tianjin Med Univ, Hosp 2, Tianjin Inst Urol, Tianjin 300211, Peoples R China
基金
中国国家自然科学基金;
关键词
ABEs; Optogenetics; Spatiotemporal control; Upconversion nanoparticles; CONVERSION; EXPRESSION; SYSTEM; BRAIN; DNA; CRISPR-CAS9; ANIMALS;
D O I
10.1016/j.biomaterials.2023.122328
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
CRISPR-based base editors (BEs) are powerful tools for precise nucleotide substitution in a wide range of organisms, but spatiotemporal control of base editing remains a daunting challenge. Herein, we develop a photoactivatable base editor (Mag-ABE) for spatiotemporally controlled genome editing in vivo for the first time. The base editing activity of Mag-ABE can be activated by blue light for spatiotemporal regulation of both EGFP reporter gene and various endogenous genes editing. Meanwhile, the Mag-ABE prefers to edit A4 and A5 positions rather than to edit A6 position, showing the potential to decrease bystander editing of traditional adenine base editors. After integration with upconversion nanoparticles as a light transducer, the Mag-ABE is further applied for near-infrared (NIR) light-activated base editing of liver in transgenic reporter mice successfully. This study opens a promising way to improve the operability, safety, and precision of base editing.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Disease modeling by efficient genome editing using a near PAM-less base editor in vivo
    Rosello, Marion
    Serafini, Malo
    Mignani, Luca
    Finazzi, Dario
    Giovannangeli, Carine
    Mione, Marina C.
    Concordet, Jean-Paul
    Del Bene, Filippo
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [42] In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model
    Carreras, Alba
    Pane, Luna Simona
    Nitsch, Roberto
    Madeyski-Bengtson, Katja
    Porritt, Michelle
    Akcakaya, Pinar
    Taheri-Ghahfarokhi, Amir
    Ericson, Elke
    Bjursell, Mikael
    Perez-Alcazar, Marta
    Seeliger, Frank
    Althage, Magnus
    Knoll, Ralph
    Hicks, Ryan
    Mayr, Lorenz M.
    Perkins, Rosie
    Linden, Daniel
    Boren, Jan
    Bohlooly-Y, Mohammad
    Maresca, Marcello
    BMC BIOLOGY, 2019, 17 (1)
  • [43] In vivo genome editing via the HITI method as a tool for gene therapy
    Suzuki, Keiichiro
    Belmonte, Juan Carlos Izpisua
    JOURNAL OF HUMAN GENETICS, 2018, 63 (02) : 157 - 164
  • [44] In vivo liver targeted genome editing as therapeutic approach: progresses and challenges
    Simoni, Chiara
    Barbon, Elena
    Muro, Andres F.
    Cantore, Alessio
    FRONTIERS IN GENOME EDITING, 2024, 6
  • [45] Lipid nanoparticle-based ribonucleoprotein delivery for in vivo genome editing
    Onuma, Haruno
    Sato, Yusuke
    Harashima, Hideyoshi
    JOURNAL OF CONTROLLED RELEASE, 2023, 355 (406-416) : 406 - 416
  • [46] Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo
    Li, Huiying
    Qiu, Yuhao
    Song, Bowen
    Quan, Xinyi
    Zhang, Dan
    Li, Xinru
    Yang, Jingyun
    Liu, Xiaohong
    Zeng, Zhiyang
    Jing, Ji
    Yin, Shuming
    Dai, Qi
    Wang, Liren
    Han, Honghui
    Ye, Haifeng
    Sun, Zhenliang
    Cheng, Yiyun
    Zhang, Xueli
    Du, Bing
    Liu, Mingyao
    Li, Dali
    NATURE BIOTECHNOLOGY, 2025,
  • [47] A split and inducible adenine base editor for precise in vivo base editing
    Zeng, Hongzhi
    Yuan, Qichen
    Peng, Fei
    Ma, Dacheng
    Lingineni, Ananya
    Chee, Kelly
    Gilberd, Peretz
    Osikpa, Emmanuel C.
    Sun, Zheng
    Gao, Xue
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [48] Random Base Editing for Genome Evolution in Saccharomyces cerevisiae
    Pan, Yingjia
    Xia, Siyang
    Dong, Chang
    Pan, Haojie
    Cai, Jin
    Huang, Lei
    Xu, Zhinan
    Lian, Jiazhang
    ACS SYNTHETIC BIOLOGY, 2021, 10 (10): : 2440 - 2446
  • [49] Targeted base editing in the mitochondrial genome of Arabidopsis thaliana
    Nakazato, Issei
    Okuno, Miki
    Zhou, Chang
    Itoh, Takehiko
    Tsutsumi, Nobuhiro
    Takenaka, Mizuki
    Arimura, Shin-Ichi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (20)
  • [50] Evaluation of genome and base editing tools in maize protoplasts
    Fierlej, Yannick
    Jacquier, Nathanael M. A.
    Guille, Loic
    Just, Jeremy
    Montes, Emilie
    Richard, Christelle
    Loue-Manifel, Jeanne
    Depege-Fargeix, Nathalie
    Gaillard, Antoine
    Widiez, Thomas
    Rogowsky, Peter M.
    FRONTIERS IN PLANT SCIENCE, 2022, 13