Global bounded weak solutions in a two-dimensional Keller-Segel-Navier-Stokes system with indirect signal production and nonlinear diffusion

被引:3
作者
Gao, Kai [1 ]
机构
[1] 002 Country Rd, Linyi 276300, Peoples R China
关键词
Keller-Segel model; Navier-Stokes system; Nonlinear diffusion; Indirect signal production; Weak solution; Global boundedness; TIME BLOW-UP; CHEMOTAXIS SYSTEM; EXISTENCE; MODEL;
D O I
10.1016/j.jmaa.2023.127595
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the coupled quasilinear Keller-Segel-Navier-Stokes system with indirect signal production and nonlinear diffusion ⎧ ⎨ ⎪⎪⎪⎪ ⎪ ⎪⎪⎪⎪⎪⎩ nt & PLUSMN; u & BULL; Vn = & UDelta;nm - V & BULL; (nVv), xE S2, t > 0, vt & PLUSMN;u & BULL; Vv= & UDelta;v - v & PLUSMN;w, xE S2, t > 0, wt & PLUSMN;u & BULL; Vw = & UDelta;w - w & PLUSMN; n, xE S2, t > 0, ut & PLUSMN; (u & BULL; V)u & PLUSMN; VP = & UDelta;u & PLUSMN;nV & phi;, xE S2, t > 0, V & BULL;u= 0, xE S2, t > 0 (*) under no-flux boundary conditions for n, v and w and no-slip boundary condition for u in a bounded domain S2 C R2 with smooth boundary, where & phi; E W2,& INFIN;(S2) and m > 0. If m > 1, then for any sufficiently smooth initial data, there exists at least one globally defined weak solution which is bounded for the corresponding initial-boundary value problem of system (*).& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:31
相关论文
共 42 条
[3]   Fluid interaction does not affect the critical exponent in a three-dimensional Keller-Segel-Stokes model [J].
Cao, Xinru .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (02)
[4]   Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (07) :1205-1235
[5]   Finite-time blow-up in a quasilinear system of chemotaxis [J].
Cieslak, Tomasz ;
Winkler, Michael .
NONLINEARITY, 2008, 21 (05) :1057-1076
[6]   Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions [J].
Cieslak, Tomasz ;
Stinner, Christian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5832-5851
[7]   Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system [J].
Cieslak, Tomasz ;
Laurencot, Philippe .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :437-446
[8]   Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with indirect signal production [J].
Dai, Feng ;
Liu, Bin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 333 :436-488
[9]   Global Solutions to the Coupled Chemotaxis-Fluid Equations [J].
Duan, Renjun ;
Lorz, Alexander ;
Markowich, Peter .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) :1635-1673
[10]  
Evans L.C., 2010, Graduate Studies in Mathematics, V19