Targeted high-throughput mutagenesis of the human spliceosome reveals its in vivo operating principles

被引:20
作者
Beusch, Irene [1 ]
Rao, Beiduo [1 ,4 ]
Studer, Michael K. [1 ,2 ]
Luhovska, Tetiana [2 ]
Sukyte, Viktorija [2 ]
Lei, Susan [1 ,5 ]
Oses-Prieto, Juan [3 ]
SeGraves, Em [1 ]
Burlingame, Alma [1 ,3 ]
Jonas, Stefanie [1 ,2 ]
Madhani, Hiten D. [1 ]
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[2] Swiss Fed Inst Technol, Inst Mol Biol & Biophys, Dept Biol, Zurich, Switzerland
[3] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA USA
[4] Calico Life Sci LLC, South San Francisco, CA USA
[5] Univ Calif Davis, Davis, CA USA
基金
瑞士国家科学基金会; 芬兰科学院;
关键词
SPLICING FIDELITY; STRUCTURAL BASIS; LARIAT-INTRON; BOX ATPASES; RNA; PRP43; ACTIVATION; COMPONENTS; MUTATIONS; PROOFREAD;
D O I
10.1016/j.molcel.2023.06.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The spliceosome is a staggeringly complex machine, comprising, in humans, 5 snRNAs and >150 proteins. We scaled haploid CRISPR-Cas9 base editing to target the entire human spliceosome and investigated the mutants using the U2 snRNP/SF3b inhibitor, pladienolide B. Hypersensitive substitutions define functional sites in the U1/U2-containing A complex but also in components that act as late as the second chemical step after SF3b is dissociated. Viable resistance substitutions map not only to the pladienolide B-binding site but also to the G-patch domain of SUGP1, which lacks orthologs in yeast. We used these mutants and biochemical approaches to identify the spliceosomal disassemblase DHX15/hPrp43 as the ATPase ligand for SUGP1. These and other data support a model in which SUGP1 promotes splicing fidelity by triggering early spliceosome disassembly in response to kinetic blocks. Our approach provides a template for the analysis of essential cellular machines in humans.
引用
收藏
页码:2578 / +
页数:27
相关论文
共 76 条
[1]   Genetic alterations ofSUGP1mimic mutant-SF3B1splice pattern in lung adenocarcinoma and other cancers [J].
Alsafadi, Samar ;
Dayot, Stephane ;
Tarin, Malcy ;
Houy, Alexandre ;
Bellanger, Dorine ;
Cornella, Michele ;
Wassef, Michel ;
Waterfall, Joshua J. ;
Lehnert, Erik ;
Roman-Roman, Sergio ;
Stern, Marc-Henri ;
Popova, Tatiana .
ONCOGENE, 2021, 40 (01) :85-96
[2]   Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors [J].
Anzalone, Andrew V. ;
Koblan, Luke W. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2020, 38 (07) :824-844
[3]   Efficient and crucial quality control of HAP1 cell ploidy status [J].
Beigl, Tobias B. ;
Kjosas, Ine ;
Seljeseth, Emilie ;
Glomnes, Nina ;
Aksnes, Henriette .
BIOLOGY OPEN, 2020, 9 (11)
[4]   Splicing Factor Mutations in Cancer [J].
Bejar, Rafael .
RNA PROCESSING: DISEASE AND GENOME-WIDE PROBING, 2016, 907 :215-228
[5]   The Relationship between Alternative Splicing and Proteomic Complexity [J].
Blencowe, Benjamin J. .
TRENDS IN BIOCHEMICAL SCIENCES, 2017, 42 (06) :407-408
[6]   Tracing cellular heterogeneity in pooled genetic screens via multi-level barcoding [J].
Boettcher, Michael ;
Covarrubias, Sergio ;
Biton, Anne ;
Blau, James ;
Wang, Haopeng ;
Zaitlen, Noah ;
McManus, Michael T. .
BMC GENOMICS, 2019, 20 (1)
[7]   Efficient proximity labeling in living cells and organisms with TurboID [J].
Branon, Tess C. ;
Bosch, Justin A. ;
Sanchez, Ariana D. ;
Udeshi, Namrata D. ;
Svinkina, Tanya ;
Carr, Steven A. ;
Feldman, Jessica L. ;
Perrimon, Norbert ;
Ting, Alice Y. .
NATURE BIOTECHNOLOGY, 2018, 36 (09) :880-+
[8]  
BROSI R, 1993, J BIOL CHEM, V268, P17640
[9]   A MECHANISM TO ENHANCE MESSENGER-RNA SPLICING FIDELITY - THE RNA-DEPENDENT ATPASE PRP16 GOVERNS USAGE OF A DISCARD PATHWAY FOR ABERRANT LARIAT INTERMEDIATES [J].
BURGESS, SM ;
GUTHRIE, C .
CELL, 1993, 73 (07) :1377-1391
[10]   Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS MS and database searching [J].
Clauser, KR ;
Baker, P ;
Burlingame, AL .
ANALYTICAL CHEMISTRY, 1999, 71 (14) :2871-2882