DB-YOLOv5: A UAV Object Detection Model Based on Dual Backbone Network for Security Surveillance

被引:7
|
作者
Liu, Yuzhao [1 ]
Li, Wan [1 ]
Tan, Li [1 ,2 ]
Huang, Xiaokai [1 ]
Zhang, Hongtao [1 ]
Jiang, Xujie [1 ]
机构
[1] Beijing Technol & Business Univ, Sch Comp Sci & Engn, Beijing 100048, Peoples R China
[2] Univ Elect Sci & Technol China, Chongqing Inst Microelect Ind Technol, Chongqing 400031, Peoples R China
关键词
object detection; UAV; security surveillance; feature pyramid network; attention mechanism;
D O I
10.3390/electronics12153296
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicle (UAV) object detection technology is widely used in security surveillance applications, allowing for real-time collection and analysis of image data from camera equipment carried by a UAV to determine the category and location of all targets in the collected images. However, small-scale targets can be difficult to detect and can compromise the effectiveness of security surveillance. In this work, we propose a novel dual-backbone network detection method (DB-YOLOv5) that uses multiple composite backbone networks to enhance the extraction capability of small-scale targets' features and improve the accuracy of the object detection model. We introduce a bi-directional feature pyramid network for multi-scale feature learning and a spatial pyramidal attention mechanism to enhance the network's ability to detect small-scale targets during the object detection process. Experimental results on the challenging UAV aerial photography dataset VisDrone-DET demonstrate the effectiveness of our proposed method, with a 3% improvement over the benchmark model. Our approach can enhance security surveillance in UAV object detection, providing a valuable tool for monitoring and protecting critical infrastructure.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Improved small foreign object debris detection network based on YOLOv5
    Zhang, Heng
    Fu, Wei
    Li, Dong
    Wang, Xiaoming
    Xu, Tengda
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (01)
  • [32] Improved small foreign object debris detection network based on YOLOv5
    Heng Zhang
    Wei Fu
    Dong Li
    Xiaoming Wang
    Tengda Xu
    Journal of Real-Time Image Processing, 2024, 21
  • [33] Cross-YOLO: an object detection algorithm for UAV based on improved YOLOv8 model
    Ying Dong
    Jiahao Guo
    Fucheng Xu
    Signal, Image and Video Processing, 2025, 19 (6)
  • [34] A lightweight vehicles detection network model based on YOLOv5
    Dong, Xudong
    Yan, Shuai
    Duan, Chaoqun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 113
  • [35] An Improved UAV Detection Method Based on YOLOv5
    Liu, Xinfeng
    Chen, Mengya
    Li, Chenglong
    Tian, Jie
    Zhou, Hao
    Ullah, Inam
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 739 - 750
  • [36] A Pedestrian Detection Network Model Based on Improved YOLOv5
    Li, Ming-Lun
    Sun, Guo-Bing
    Yu, Jia-Xiang
    ENTROPY, 2023, 25 (02)
  • [37] UAV-YOLOv5: A Swin-Transformer-Enabled Small Object Detection Model for Long-Range UAV Images
    Li J.
    Xie C.
    Wu S.
    Ren Y.
    Annals of Data Science, 2024, 11 (04) : 1109 - 1138
  • [38] Object Detection Based on Improved YOLOv7 for UAV Aerial Image
    Cui, Liqun
    Cao, Huawei
    Computer Engineering and Applications, 60 (20): : 189 - 197
  • [39] Small Object Detection in UAV Images Based on YOLOv8n
    Xu, Longyan
    Zhao, Yifan
    Zhai, Yahong
    Huang, Liming
    Ruan, Chongwei
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [40] Improved YOLOv5 Based on the Mobilevit Backbone for the Detection of Steel Surface Defects Improved YOLOv5 based on the mobilevit backbone and BiFPN
    Qiu, Kun
    Wang, Changkun
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 305 - 309