Numerical radius inequalities of sectorial matrices

被引:3
作者
Bhunia, Pintu [1 ]
Paul, Kallol [2 ]
Sen, Anirban [2 ]
机构
[1] Indian Inst Sci, Dept Math, Bengaluru 560012, Karnataka, India
[2] Jadavpur Univ, Dept Math, Kolkata 700032, West Bengal, India
关键词
Numerical radius; Numerical range; Accretive matrix; Sectorial matrix; OPERATORS; BOUNDS;
D O I
10.1007/s43034-023-00288-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain several upper and lower bounds for the numerical radius of sectorial matrices. We also develop several numerical radius inequalities of the sum, product and commutator of sectorial matrices. The inequalities obtained here are sharper than the existing related inequalities for general matrices. Among many other results we prove that if A is an n xn complex matrix with the numerical range W( A) satisfying W( A) subset of {re(+/- i theta) : theta(1) <= theta <= theta(2)}, where r > 0 and theta(1), theta(2). [0, pi/2], then (i) w(A) >= csc gamma/2 ||A|| + csc gamma/2 | ||(sic) (A)|| - ||(sic) (A)|| |, and (ii) w(2) (A) >= csc(2)gamma/4 || AA * + A* A || + csc(2)gamma/2 | ||(sic) (A)||(2) -||(sic) (A)||(2)|, where gamma = max{theta(2), pi/2 - theta(1)}. We also prove that if A, B are sectorial matrices with sectorial index gamma is an element of [0, pi/2) and they are double commuting, then w( AB) = <=(1 + sin(2)gamma) w( A) w(B).
引用
收藏
页数:17
相关论文
共 24 条
  • [1] A geometric approach to numerical radius inequalities
    Abu Sammour, Samah
    Kittaneh, Fuad
    Sababheh, Mohammad
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 652 : 1 - 17
  • [2] BOUNDS OF NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS USING t-ALUTHGE TRANSFORM
    Bag, Santanu
    Bhunia, Pintu
    Paul, Kallol
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (03): : 991 - 1004
  • [3] From positive to accretive matrices
    Bedrani, Yassine
    Kittaneh, Fuad
    Sababheh, Mohammad
    [J]. POSITIVITY, 2021, 25 (04) : 1601 - 1629
  • [4] Numerical radii of accretive matrices
    Bedrani, Yassine
    Kittaneh, Fuad
    Sababheh, Mohammed
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (05) : 957 - 970
  • [5] Bhunia P., 2022, INFOSYS SCI FDN SERI
  • [6] Development of inequalities and characterization of equality conditions for the numerical radius
    Bhunia, Pintu
    Paul, Kallol
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 630 : 306 - 315
  • [7] REFINEMENTS OF NORM AND NUMERICAL RADIUS INEQUALITIES
    Bhunia, Pintu
    Paul, Kallol
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (06) : 1953 - 1965
  • [8] Proper Improvement of Well-Known Numerical Radius Inequalities and Their Applications
    Bhunia, Pintu
    Paul, Kallol
    [J]. RESULTS IN MATHEMATICS, 2021, 76 (04)
  • [9] Furtherance of numerical radius inequalities of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    [J]. ARCHIV DER MATHEMATIK, 2021, 117 (05) : 537 - 546
  • [10] New upper bounds for the numerical radius of Hilbert space operators
    Bhunia, Pintu
    Paul, Kallol
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 167