cGAN Model-Based Radio Frequency Interference Mitigation for Radio Astronomy Data

被引:4
作者
Helmy, Islam [1 ]
Choi, Wooyeol [1 ]
机构
[1] Chosun Univ, Dept Comp Engn, Gwangju, South Korea
来源
2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC | 2023年
关键词
RFI mitigation; cGAN; radio astronomy;
D O I
10.1109/ICAIIC57133.2023.10066995
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Radio astronomy is one of the essential branches of space sciences where astronomers explore the universe by collecting data using various tools. The radio telescope is one of the principal tools for receiving celestial objects' emissions. However, radio frequency interference (RFI) detection, mitigation, and avoidance are some of the main challenges in astronomical radio data. Additionally, they are essential steps for selecting the best site to initiate the radio telescope. RFI mitigation is arduous because interference can take a wide range of forms and affects different scientific goals. The substantial challenges of handling large radio data volumes make it a good application of deep learning (DL). The research aims to mitigate the interference using a DL-based approach, specifically, conditional generative adversarial network (cGAN), because of its powerful ability to differentiate the interference and the clean data.
引用
收藏
页码:748 / 750
页数:3
相关论文
共 8 条
  • [1] Radio frequency interference mitigation using deep convolutional neural networks
    Akeret, J.
    Chang, C.
    Lucchi, A.
    Refregier, A.
    [J]. ASTRONOMY AND COMPUTING, 2017, 18 : 35 - 39
  • [2] Croft S., FIND ET
  • [3] Densely Connected Convolutional Networks
    Huang, Gao
    Liu, Zhuang
    van der Maaten, Laurens
    Weinberger, Kilian Q.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2261 - 2269
  • [4] Optimizing sparse RFI prediction using deep learning
    Kerrigan, Joshua
    La Plante, Paul
    Kohn, Saul
    Pober, Jonathan C.
    Aguirre, James
    Abdurashidova, Zara
    Alexander, Paul
    Ali, Zaki S.
    Balfour, Yanga
    Beardsley, Adam P.
    Bernardi, Gianni
    Bowman, Judd D.
    Bradley, Richard F.
    Burba, Jacob
    Carilli, Chris L.
    Cheng, Carina
    DeBoer, David R.
    Dexter, Matt
    Acedo, Eloy de Lera
    Dillon, Joshua S.
    Estrada, Julia
    Ewall-Wice, Aaron
    Fagnoni, Nicolas
    Fritz, Randall
    Furlanetto, Steve R.
    Glendenning, Brian
    Greig, Bradley
    Grobbelaar, Jasper
    Gorthi, Deepthi
    Halday, Ziyaad
    Hazelton, Bryna J.
    Hickish, Jack
    Jacobs, Daniel C.
    Julius, Austin
    Kern, Nicholas S.
    Kittiwisit, Piyanat
    Kolopanis, Matthew
    Lanman, Adam
    Lekalake, Telalo
    Liu, Adrian
    MacMahon, David
    Malan, Lourence
    Malgas, Cresshim
    Maree, Matthys
    Martinot, Zachary E.
    Matsetela, Eunice
    Mesinger, Andrei
    Molewa, Mathakane
    Morales, Miguel F.
    Mosiane, Tshegofalang
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 488 (02) : 2605 - 2615
  • [5] The Green Bank Telescope
    Prestage, Richard M.
    Constantikes, Kim T.
    Hunter, Todd R.
    King, Lee J.
    Lacasse, Richard J.
    Lockman, Felix J.
    Norrod, Roger D.
    [J]. PROCEEDINGS OF THE IEEE, 2009, 97 (08) : 1382 - 1390
  • [6] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [7] Deep learning improves identification of Radio Frequency Interference
    Sadr, Alireza Vafaei
    Bassett, Bruce A.
    Oozeer, Nadeem
    Fantaye, Yabebal
    Finlay, Chris
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 499 (01) : 379 - 390
  • [8] High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
    Wang, Ting-Chun
    Liu, Ming-Yu
    Zhu, Jun-Yan
    Tao, Andrew
    Kautz, Jan
    Catanzaro, Bryan
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8798 - 8807