A Characterization of Sequentially Cohen-Macaulay Matroidal Ideals

被引:1
作者
Hamaali, Payman Mahmood [1 ]
Mafi, Amir [2 ]
Saremi, Hero [3 ]
机构
[1] Univ Sulaimani, Coll Sci, Dept Math, Sulaimanyah, Kurdistan, Iraq
[2] Univ Kurdistan, Dept Math, POB 416, Sananda, Iran
[3] Islamic Azad Univ, Dept Math, Sanandaj Branch, Sanandaj, Iran
关键词
sequentially Cohen-Macaulay; monomial ideals; matroidal ideals;
D O I
10.1142/S1005386723000196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R = K[x(1),..., x(n)] be the polynomial ring in n variables over a field K and I be a matroidal ideal of R. We show that I is sequentially Cohen-Macaulay if and only if the Alexander dual I-? has linear quotients. As a consequence, I is sequentially Cohen-Macaulay if and only if I is shellable.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 35 条
[31]   Cohen-Macaulayness of large powers of Stanley-Reisner ideals [J].
Terai, Naoki ;
Ngo Viet Trung .
ADVANCES IN MATHEMATICS, 2012, 229 (02) :711-730
[32]   COHEN-MACAULAYNESS AND LIMIT BEHAVIOR OF DEPTH FOR POWERS OF COVER IDEALS [J].
Constantinescu, A. ;
Pournaki, M. R. ;
Fakhari, S. A. Seyed ;
Terai, N. ;
Yassemi, S. .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (01) :143-157
[33]   On the Cohen-Macaulayness of Bracket Powers of Generalized Mixed Product Ideals [J].
Roya Moghimipor .
Acta Mathematica Vietnamica, 2022, 47 :709-718
[34]   A numerical characterization of the extremal Betti numbers of t-spread strongly stable ideals [J].
Luca Amata ;
Antonino Ficarra ;
Marilena Crupi .
Journal of Algebraic Combinatorics, 2022, 55 :891-918
[35]   A numerical characterization of the extremal Betti numbers of t-spread strongly stable ideals [J].
Amata, Luca ;
Ficarra, Antonino ;
Crupi, Marilena .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (03) :891-918