Distribution Reliability Assessment-Based Incremental Learning for Automatic Target Recognition

被引:5
|
作者
Dang, Sihang [1 ,2 ]
Cui, Zongyong [3 ]
Cao, Zongjie [3 ]
Pi, Yiming [3 ]
Feng, Xiaoyi [2 ]
机构
[1] Collaborat Innovat Ctr NPU, Shanghai 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710072, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Reliability; Training; Labeling; Target recognition; Predictive models; Data models; Reliability theory; Automatic target recognition (ATR); exemplar selection; incremental learning; reliability assessment; CLASSIFICATION; SELECTION;
D O I
10.1109/TGRS.2023.3277873
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To rapidly improve the automatic target recognition (ATR) system when new unknown samples are constantly captured, it is necessary to examine the existing training samples and recognition model so that the ATR system could autonomously assess new unknown samples with low predictive reliability during the recognition process and learn them preferentially. Incremental learning methods generally consider forming key exemplar set from the existing known samples, but rarely managing updates of unknown samples. In this article, an incremental samples' evaluation and management method from the perspective of distribution-reliability-assessment-based incremental learning frame (DRaIL) is proposed, which realizes the retention of existent reliable exemplars and the predictive-reliability-assessment-based updating of new unknown samples simultaneously. DRaIL preserves the prior distribution in the high-density and overlap regions first, and then the classification reliability and "in-of-distribution" reliability of new unknown samples are evaluated based on the consistency between the new and preserved distributions. Updating the new samples with low reliability using new labels could rapidly improve the classification surface and add new classes. Experimental results for the practical incremental learning scenario demonstrate the validity of the proposed DRaIL on representative exemplar selection and reliability ranking performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Class Boundary Exemplar Selection Based Incremental Learning for Automatic Target Recognition
    Dang, Sihang
    Cao, Zongjie
    Cui, Zongyong
    Pi, Yiming
    Liu, Nengyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5782 - 5792
  • [2] Incremental Learning Based on Anchored Class Centers for SAR Automatic Target Recognition
    Li, Bin
    Cui, Zongyong
    Cao, Zongjie
    Yang, Jianyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Open Set Incremental Learning for Automatic Target Recognition
    Dang, Sihang
    Cao, Zongjie
    Cui, Zongyong
    Pi, Yiming
    Liu, Nengyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (07): : 4445 - 4456
  • [4] Incremental SAR Automatic Target Recognition With Error Correction and High Plasticity
    Tang, Jiaxin
    Xiang, Deliang
    Zhang, Fan
    Ma, Fei
    Zhou, Yongsheng
    Li, HengChao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 1327 - 1339
  • [5] Inclusive Consistency-Based Quantitative Decision-Making Framework for Incremental Automatic Target Recognition
    Dang, Sihang
    Xia, Zhaoqiang
    Jiang, Xiaoyue
    Gui, Shuliang
    Feng, Xiaoyi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [6] Dynamic Embedding Relation Distillation Network for Incremental SAR Automatic Target Recognition
    Ren, Haohao
    Dong, Fulu
    Zhou, Rongsheng
    Yu, Xuelian
    Zou, Lin
    Zhou, Yun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [7] Density Coverage-Based Exemplar Selection for Incremental SAR Automatic Target Recognition
    Li, Bin
    Cui, Zongyong
    Sun, Yuxuan
    Yang, Jianyu
    Cao, Zongjie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] SAR Incremental Automatic Target Recognition Based on Mutual Information Maximization
    Li, Bin
    Cui, Zongyong
    Wang, Haohan
    Deng, Yijie
    Ma, Jizhen
    Yang, Jianyu
    Cao, Zongjie
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [9] SAR Target Incremental Recognition Based on Features With Strong Separability
    Gao, Fei
    Kong, Lingzhe
    Lang, Rongling
    Sun, Jinping
    Wang, Jun
    Hussain, Amir
    Zhou, Huiyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [10] Research on automatic target detection and recognition based on deep learning
    Wang, Jia
    Liu, Chen
    Fu, Tian
    Zheng, Lili
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 60 : 44 - 50