Optimal Parameter Estimation Techniques for Complex Nonlinear Systems

被引:1
作者
Kumar, Kaushal [1 ]
Kostina, Ekaterina [1 ]
机构
[1] Heidelberg Univ, Inst Appl Math, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
关键词
Parameter estimation; Nonlinear dynamics; Gradient-based iteration; Levenberg-Marquardt algorithm; Nelder-Mead simplex method; Pharmacokinetic modeling; LEVENBERG-MARQUARDT ALGORITHM; EQUATIONS;
D O I
10.1007/s12591-024-00688-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Accurate parameter estimation and state identification within nonlinear systems are fundamental challenges addressed by optimization techniques. This paper fills a critical gap in previous research by investigating tailored optimization methods for parameter estimation in nonlinear system modeling, with a particular emphasis on chaotic dynamical systems. We introduce and compare three optimization methods: a gradient-based iterative algorithm, the Levenberg-Marquardt algorithm, and the Nelder-Mead simplex method. These methods are strategically employed to simplify complex nonlinear optimization problems, rendering them more manageable. Through a comprehensive exploration of the performance of these methods in determining parameters across diverse systems, including the van der Pol oscillator, the Rossler system, and pharmacokinetic modeling, our study revealed that the accuracy and reliability of the Nelder-Mead simplex method were consistent. The Nelder-Mead simplex algorithm emerged as a powerful tool, that consistently outperforms alternative methods in terms of root mean squared error (RMSE) and convergence reliability. Visualizations of trajectory comparisons and parameter convergence under various noise levels further emphasize the algorithm's robustness. These studies suggest that the Nelder-Mead simplex method has potential as a valuable tool for parameter estimation in chaotic dynamical systems. Our study's implications extend beyond theoretical considerations, offering promising insights for parameter estimation techniques in diverse scientific fields reliant on nonlinear system modeling.
引用
收藏
页数:20
相关论文
共 35 条
[1]   A modified two steps Levenberg-Marquardt method for nonlinear equations [J].
Amini, Keyvan ;
Rostami, Faramarz .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 :341-350
[2]  
[Anonymous], 2006, Derivative-Free Optimization, P220, DOI [10.1007/978-0-387-40065-5_9, DOI 10.1007/978-0-387-40065-5_9]
[3]  
[Anonymous], 2006, Least-Squares Problems, P245, DOI [10.1007/978-0-387-40065-5_10, DOI 10.1007/978-0-387-40065-5_10]
[4]   FITTING ORDINARY DIFFERENTIAL-EQUATIONS TO CHAOTIC DATA [J].
BAAKE, E ;
BAAKE, M ;
BOCK, HG ;
BRIGGS, KM .
PHYSICAL REVIEW A, 1992, 45 (08) :5524-5529
[5]   Nelder-Mead simplex modifications for simulation optimization [J].
Barton, RR ;
Ivey, JS .
MANAGEMENT SCIENCE, 1996, 42 (07) :954-973
[6]  
Bock H.G., 2015, Multiple Shooting and Time Domain Decomposition Methods. MuS-TDD, Heidelberg, May 6-8, 2013, P1, DOI [10.1007/978-3-319-23321-5_1, DOI 10.1007/978-3-319-23321-5_1]
[7]  
Bock H.G., 2007, GAMM-Mitt., V30, P376, DOI DOI 10.1002/GAMM.200790024
[8]   Discovering governing equations from data by sparse identification of nonlinear dynamical systems [J].
Brunton, Steven L. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) :3932-3937
[9]  
Fan JY, 2003, J COMPUT MATH, V21, P625
[10]  
Gavin Henri P., 2013, LEVENBERG MARQUARDT