A hyperelliptic curve mapping to specified elliptic curves

被引:1
作者
Im, Bo-Hae [1 ]
Larsen, Michael [2 ]
Zhan, Sailun [3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[3] Binghamton Univ, Dept Math & Stat, Binghamton, NY 13902 USA
基金
新加坡国家研究基金会;
关键词
ABELIAN-VARIETIES; RANK; QUOTIENTS;
D O I
10.1007/s11856-023-2546-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If an ordered 13-tuple (E1, horizontal ellipsis , E13) of elliptic curves over DOUBLE-STRUCK CAPITAL C is sufficiently general, there is no hyperelliptic curve which admits a non-trivial morphism to each of the Ei.
引用
收藏
页码:409 / 431
页数:23
相关论文
共 20 条
[1]  
BOREL A., 1991, LINEAR ALGEBRAIC GRO, DOI 10.1007/978-1-4612-0941-6
[2]  
Deligne P., 1969, Inst. Hautes Etudes Sci. Publ. Math., P75
[3]   A note on Larsen's conjecture and ranks of elliptic curves [J].
Dokchitser, Tim ;
Dokchitser, Vladimir .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :1002-1008
[4]  
FREY G, 1974, P LOND MATH SOC, V28, P112
[5]  
gROTHENDIECK A., 1964, Publ. Math. IHES, V20
[6]  
Grothendieck A., 1967, Publ. Math. IHES, V32
[7]  
Grothendieck Alexander., 1966, Publications Mathematiques de l'IHES, V28
[8]  
Grothendieck Alexander., 1961, SEMINAIRE BOURBAKI, V221, P249
[9]   Rational curves on quotients of abelian varieties by finite groups [J].
Im, Bo-Hae ;
Larsen, Michael .
MATHEMATICAL RESEARCH LETTERS, 2015, 22 (04) :1145-1157
[10]   SOME APPLICATIONS OF THE HALES-JEWETT THEOREM TO FIELD ARITHMETIC [J].
Im, Bo-Hae ;
Larsen, Michael .
ISRAEL JOURNAL OF MATHEMATICS, 2013, 198 (01) :35-47