An efficient numerical scheme on adaptive mesh for solving singularly perturbed quasilinear boundary value problems

被引:0
作者
Duru, Hakki [1 ]
Demirbas, Mutlu [1 ]
Gunes, Baransel [1 ]
机构
[1] Van Yuzun Yil Univ, Dept Math, Fac Sci, Van, Turkiye
关键词
Bakhvalov-type mesh; boundary value problem; difference scheme; error estimate; singular perturbation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the singularly perturbed quasilinear boundary value problem by numerially. Initially, some features of the analytial solution of the presented problem are given. Then, by using quasilinearization technique and interpolating quadrature formulas, the finite difference scheme is constructed on Bakhvalov-type mesh. The convergence estimations of the numerial scheme are provided and three examples are solved to demonstrate the efficiency of the suggested method. The main contribution of this paper is to ensure a uniform finite difference scheme for quasilinear problems with layer behavior.
引用
收藏
页数:24
相关论文
共 39 条
[1]  
2021, Journal of Mathematical and Computational Science, DOI [10.28919/10.28919/jmcs/5589, 10.28919/jmcs/5589, 10.2891/jmcs/5589]
[2]  
Amiraliyev G.M., 1995, TURKISH J MATH, V19, P207
[3]   A Novel Numerical Approach for Solving Convection-Diffusion Problem with Boundary Layer Behavior [J].
Cakir, Musa ;
Masiha, R. Younis ;
Arslan, Derya .
GAZI UNIVERSITY JOURNAL OF SCIENCE, 2020, 33 (01) :152-166
[4]   A Unified Approach to Singularly Perturbed Quasilinear Schrodinger Equations [J].
Cassani, Daniele ;
Wang, Youjun ;
Zhang, Jianjun .
MILAN JOURNAL OF MATHEMATICS, 2020, 88 (02) :507-534
[5]   Reproducing kernel Hilbert space method for nonlinear second order singularly perturb e d boundary value problems with time-delay [J].
Chen, Shu-Bo ;
Soradi-Zeid, Samaneh ;
Dutta, Hemen ;
Mesrizadeh, Mehdi ;
Jahanshahi, Hadi ;
Chu, Yu-Ming .
CHAOS SOLITONS & FRACTALS, 2021, 144
[6]   An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh [J].
Das, Pratibhamoy .
NUMERICAL ALGORITHMS, 2019, 81 (02) :465-487
[7]  
Duru H., 2022, Turkish Journal of Mathemati s and Computer S ien e, V14, DOI [10.47000/tjms.1010528, DOI 10.47000/TJMS.1010528]
[8]  
Duru H, 2019, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, V12, P425, DOI [10.18185/erzifbed.479466, 10.18185/erzifbed.479466, DOI 10.18185/ERZIFBED.479466]
[9]   THE FINITE DIFFERENCE METHOD ON ADAPTIVE MESH FOR SINGULARLY PERTURBED NONLINEAR 1D REACTION DIFFUSION BOUNDARY VALUE PROBLEMS [J].
Duru, Hakla ;
Gunes, Baransel .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2020, 19 (04) :45-56
[10]  
Erdogan F, 2017, Mathematics in Natural Science, V02, DOI [10.22436/mns.02.01.01, 10.22436/mns.02.01.01, DOI 10.22436/MNS.02.01.01]