Local Differential Privacy Based Membership-Privacy-Preserving Federated Learning for Deep-Learning-Driven Remote Sensing

被引:5
|
作者
Zhang, Zheng [1 ]
Ma, Xindi [1 ]
Ma, Jianfeng [1 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing image classification; local differential privacy; deep learning; federated learning; membership inference attack; SCENE CLASSIFICATION; INFERENCE ATTACKS;
D O I
10.3390/rs15205050
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With the development of deep learning, image recognition based on deep learning is now widely used in remote sensing. As we know, the effectiveness of deep learning models significantly benefits from the size and quality of the dataset. However, remote sensing data are often distributed in different parts. They cannot be shared directly for privacy and security reasons, and this has motivated some scholars to apply federated learning (FL) to remote sensing. However, research has found that federated learning is usually vulnerable to white-box membership inference attacks (MIAs), which aim to infer whether a piece of data was participating in model training. In remote sensing, the MIA can lead to the disclosure of sensitive information about the model trainers, such as their location and type, as well as time information about the remote sensing equipment. To solve this issue, we consider embedding local differential privacy (LDP) into FL and propose LDP-Fed. LDP-Fed performs local differential privacy perturbation after properly pruning the uploaded parameters, preventing the central server from obtaining the original local models from the participants. To achieve a trade-off between privacy and model performance, LDP-Fed adds different noise levels to the parameters for various layers of the local models. This paper conducted comprehensive experiments to evaluate the framework's effectiveness on two remote sensing image datasets and two machine learning benchmark datasets. The results demonstrate that remote sensing image classification models are susceptible to MIAs, and our framework can successfully defend against white-box MIA while achieving an excellent global model.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Preserving User Privacy for Machine Learning: Local Differential Privacy or Federated Machine Learning?
    Zheng, Huadi
    Hu, Haibo
    Han, Ziyang
    IEEE INTELLIGENT SYSTEMS, 2020, 35 (04) : 5 - 14
  • [2] PPeFL: Privacy-Preserving Edge Federated Learning With Local Differential Privacy
    Wang, Baocang
    Chen, Yange
    Jiang, Hang
    Zhao, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15488 - 15500
  • [3] Local Differential Privacy for Federated Learning
    Arachchige, Pathum Chamikara Mahawaga
    Liu, Dongxi
    Camtepe, Seyit
    Nepal, Surya
    Grobler, Marthie
    Bertok, Peter
    Khalil, Ibrahim
    COMPUTER SECURITY - ESORICS 2022, PT I, 2022, 13554 : 195 - 216
  • [4] Privacy-Preserving Robust Federated Learning with Distributed Differential Privacy
    Wang, Fayao
    He, Yuanyuan
    Guo, Yunchuan
    Li, Peizhi
    Wei, Xinyu
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 598 - 605
  • [5] PFLM: Privacy-preserving federated learning with membership proof
    Jiang, Changsong
    Xu, Chunxiang
    Zhang, Yuan
    INFORMATION SCIENCES, 2021, 576 : 288 - 311
  • [6] PFLM: Privacy-preserving federated learning with membership proof
    Jiang, Changsong
    Xu, Chunxiang
    Zhang, Yuan
    Xu, Chunxiang (chxxu@uestc.edu.cn), 1600, Elsevier Inc. (576): : 288 - 311
  • [7] Privacy-Preserving Federated Learning based on Differential Privacy and Momentum Gradient Descent
    Weng, Shangyin
    Zhang, Lei
    Feng, Daquan
    Feng, Chenyuan
    Wang, Ruiyu
    Klaine, Paulo Valente
    Imran, Muhammad Ali
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [8] Deep learning-based privacy-preserving recommendations in federated learning
    Kolli, Chandra Sekhar
    Reddy, V. V. Krishna
    Reddy, Tatireddy Subba
    Chandol, Mohan Kumar
    Dasari, Durga Bhavani
    Reddy, Mule RamaKrishna
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2024, 53 (06) : 651 - 677
  • [9] Active Membership Inference Attack under Local Differential Privacy in Federated Learning
    Nguyen, Truc
    Lai, Phung
    Tran, Khang
    Phan, NhatHai
    Thai, My T.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [10] Wireless Federated Learning with Local Differential Privacy
    Seif, Mohamed
    Tandon, Ravi
    Li, Ming
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 2604 - 2609